1
|
Chakkumpulakkal Puthan Veettil T, Duffin RN, Roy S, Vongsvivut J, Tobin MJ, Martin M, Adegoke JA, Andrews PC, Wood BR. Synchrotron-Infrared Microspectroscopy of Live Leishmania major Infected Macrophages and Isolated Promastigotes and Amastigotes. Anal Chem 2023; 95:3986-3995. [PMID: 36787387 DOI: 10.1021/acs.analchem.2c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The prevalence of neglected tropical diseases (NTDs) is advancing at an alarming rate. The NTD leishmaniasis is now endemic in over 90 tropical and sub-tropical low socioeconomic countries. Current diagnosis for this disease involves serological assessment of infected tissue by either light microscopy, antibody tests, or culturing with in vitro or in vivo animal inoculation. Furthermore, co-infection by other pathogens can make it difficult to accurately determine Leishmania infection with light microscopy. Herein, for the first time, we demonstrate the potential of combining synchrotron Fourier-transform infrared (FTIR) microspectroscopy with powerful discrimination tools, such as partial least squares-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), and k-nearest neighbors (KNN), to characterize the parasitic forms of Leishmania major both isolated and within infected macrophages. For measurements performed on functional infected and uninfected macrophages in physiological solutions, the sensitivities from PLS-DA, SVM-DA, and KNN classification methods were found to be 0.923, 0.981, and 0.989, while the specificities were 0.897, 1.00, and 0.975, respectively. Cross-validated PLS-DA models on live amastigotes and promastigotes showed a sensitivity and specificity of 0.98 in the lipid region, while a specificity and sensitivity of 1.00 was achieved in the fingerprint region. The study demonstrates the potential of the FTIR technique to identify unique diagnostic bands and utilize them to generate machine learning models to predict Leishmania infection. For the first time, we examine the potential of infrared spectroscopy to study the molecular structure of parasitic forms in their native aqueous functional state, laying the groundwork for future clinical studies using more portable devices.
Collapse
Affiliation(s)
| | - Rebekah N Duffin
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Supti Roy
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | - Mark J Tobin
- Australian Synchrotron, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Miguela Martin
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - John A Adegoke
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Marques CMS, Pedroso JT, Bhattacharjee T, Pupin B, Pinto JG, Ferreira-Strixino J, Sakane KK. Fourier Transform Infrared Spectroscopy (FT-IR) of Pseudomonas aeruginosa post photodynamic therapy with Curcumin in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121916. [PMID: 36201868 DOI: 10.1016/j.saa.2022.121916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alternative therapies against pathogens are under intense investigation because of their increasing resistance to antibiotics. Photodynamic therapy (PDT) is one such alternative that has shown promising results. However, for the widespread use of PDT, it is essential to decipher underlying mechanisms, so as to improve PDT's therapeutic applications. Because of this, we have studied biochemical changes in pathogen Pseudomonas aeruginosa, a medically important bacteria that has developed antibiotic resistance, after PDT with curcumin photosensitizer. Results show a drastic decrease in α-helix protein and increased disordered and β-sheet secondary structure proteins in P. Aeruginosa post-PDT compared to control. Interestingly, these biochemical changes differ from PDT of pathogens Leishmania braziliensis and Leishmania major with photosensitizer methylene blue. This observation underlines the need for extensive studies on PDT of different pathogens to understand mechanisms of action and develop better PDT strategies.
Collapse
Affiliation(s)
- Camila Monteiro Santos Marques
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000, São Jose dos Campos, São Paulo, Brazil
| | - Juliana Teixeira Pedroso
- Photobiology Applied to Health (PhotoBios) - Research and Development Institute - R&DI, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000, São José dos Campos, São Paulo, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin 9016, New Zealand
| | - Breno Pupin
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000, São Jose dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBios) - Research and Development Institute - R&DI, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBios) - Research and Development Institute - R&DI, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000, São José dos Campos, São Paulo, Brazil.
| | - Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000, São Jose dos Campos, São Paulo, Brazil
| |
Collapse
|
3
|
Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA, Chakkumpulakkal Puthan Veettil T, Martin M, Roy S, Pebotuwa S, Heraud P, Wood BR. Infrared Spectroscopy of Blood. APPLIED SPECTROSCOPY 2021; 75:611-646. [PMID: 33331179 DOI: 10.1177/0003702820985856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.
Collapse
Affiliation(s)
- Kamila Kochan
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Diana E Bedolla
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - David Perez-Guaita
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - John A Adegoke
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | | | - Miguela Martin
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Supti Roy
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Savithri Pebotuwa
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Philip Heraud
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Bayden R Wood
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Saif FA, Yaseen SA, Alameen AS, Mane SB, Undre PB. Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV-Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119010. [PMID: 33035886 DOI: 10.1016/j.saa.2020.119010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 05/11/2023]
Abstract
During the investigation of fungal isolation from fruit, the major genera were Aspergillus, Penicillium, cladosporium, Alternaria, fusarium, Colletotrichum were found. Among them Aspergillus (15 species) was found major dominant on different fruits. Fifteen different Aspergillus species viz. Aspergillus brasiliensis, Aspergillus phoenicis, Aspergillus carbonarius, four Aspergillus flavus, Aspergillus acidus, two Aspergillus awamori, Aspergillus aculeatus, Aspergillus eucalypticola, Aspergillus oryzae and two Aspergillus Spp. have been differentiate and identify using morphology (microscopic technique), Fourier Transforms Infrared spectroscopy (FTIR), Raman Spectroscopy (RS) and UV-visible spectrophotometry (UV-vis). The fungal mass in powder form was used in present study. In FTIR the finger print region is important for the characterization of Aspergillus because this region is unique and contains peaks indicating the presence of DNA. From the results were found Fourier transform infrared (FTIR) technique and Raman spectroscopy a useful tool, sensitive, fast, economical, accurate, not require sample preparation and successfully used to identify fungi.
Collapse
Affiliation(s)
- F A Saif
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - S A Yaseen
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - A S Alameen
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - S B Mane
- Microbical Cultural Laboratory, Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - P B Undre
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India.
| |
Collapse
|
5
|
Sakane KK, Bhattacharjee T, Fagundes J, Marcolino LMC, Ferreira I, Pinto JG, Ferreira-Strixino J. Biochemical changes in Leishmania braziliensis after photodynamic therapy with methylene blue assessed by the Fourier transform infrared spectroscopy. Lasers Med Sci 2020; 36:821-827. [PMID: 32748166 DOI: 10.1007/s10103-020-03110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
Photodynamic therapy (PDT) with photosensitizer methylene blue was applied to Leishmania braziliensis, and Fourier transform infrared (FTIR) spectroscopy was used to study biochemical changes in the parasite after PDT in comparison to untreated (C), only irradiation (I), and only photosensitizer (PS). Spectral analysis suggests increase in lipids, proteins, and protein secondary structures in PDT compared with C and decrease in nucleic acids and carbohydrates. Interestingly, these trends are different from PDT of Leishmania major species, wherein lipids decrease; there are minimal changes in secondary structures and increase in nucleic acids and carbohydrates. The study thus suggests possibility of different biomolecular players/pathways in PDT-induced death of L. braziliensis and L. major.
Collapse
Affiliation(s)
- Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap, Shishima Hifumi Avenue, 2911, São Jose dos Campos, São Paulo, 12244-000, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Jaciara Fagundes
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Luciana Maria Cortez Marcolino
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Isabelle Ferreira
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
- Instituto de Ciências da Saúde - ICS, UNIP, Rod. Presidente Dutra, km 157, 5 - Rio Comprido, São José dos Campos, São Paulo, SP 12240-420, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil.
| |
Collapse
|
6
|
Christensen D, Rüther A, Kochan K, Pérez-Guaita D, Wood B. Whole-Organism Analysis by Vibrational Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:89-108. [PMID: 30978292 DOI: 10.1146/annurev-anchem-061318-115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has contributed to the understanding of biological materials for many years. As the technology has advanced, the technique has been brought to bear on the analysis of whole organisms. Here, we discuss advanced and recently developed infrared and Raman spectroscopic instrumentation to whole-organism analysis. We highlight many of the recent contributions made in this relatively new area of spectroscopy, particularly addressing organisms associated with disease with emphasis on diagnosis and treatment. The application of vibrational spectroscopic techniques to entire organisms is still in its infancy, but new developments in imaging and chemometric processing will likely expand in the field in the near future.
Collapse
Affiliation(s)
- Dale Christensen
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Anja Rüther
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Kamila Kochan
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | | | - Bayden Wood
- School of Chemistry, Monash University, Victoria 3800, Australia;
| |
Collapse
|
7
|
Fagundes J, Sakane KK, Bhattacharjee T, Pinto JG, Ferreira I, Raniero LJ, Ferreira-Strixino J. Evaluation of photodynamic therapy with methylene blue, by the Fourier Transform Infrared Spectroscopy (FT-IR) in Leishmania major - in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:229-235. [PMID: 30245137 DOI: 10.1016/j.saa.2018.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Jaciara Fagundes
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil
| | - Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000 São Jose dos Campos, São Paulo, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin 9016, New Zealand
| | - Juliana Guerra Pinto
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil
| | - Isabelle Ferreira
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil; Instituto de Ciências da Saúde - ICS - UNIP. Rod. Presidente Dutra, km 157, 5 - Rio Comprido, São José dos Campos SP 12240-420, São Paulo, Brazil
| | - Leandro Jose Raniero
- Nanosensors Laboratory - Research and Development Institute - R&DI, University of Vale do Paraíva, UniVap, Shishima Hifumi Avenue, 2911, 12244-000 São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
8
|
Živanović V, Semini G, Laue M, Drescher D, Aebischer T, Kneipp J. Chemical Mapping of Leishmania Infection in Live Cells by SERS Microscopy. Anal Chem 2018; 90:8154-8161. [DOI: 10.1021/acs.analchem.8b01451] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vesna Živanović
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Strasse 5-9, 12489 Berlin, Germany
| | | | | | | | | | - Janina Kneipp
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Strasse 5-9, 12489 Berlin, Germany
| |
Collapse
|
9
|
A pilot study on fingerprinting Leishmania species from the Old World using Fourier transform infrared spectroscopy. Anal Bioanal Chem 2017; 409:6907-6923. [PMID: 29080902 PMCID: PMC5670197 DOI: 10.1007/s00216-017-0655-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 12/02/2022]
Abstract
Leishmania species are protozoan parasites and the causative agents of leishmaniasis, a vector borne disease that imposes a large health burden on individuals living mainly in tropical and subtropical regions. Different Leishmania species are responsible for the distinct clinical patterns, such as cutaneous, mucocutaneous, and visceral leishmaniasis, with the latter being potentially fatal if left untreated. For this reason, it is important to perform correct species identification and differentiation. Fourier transform infrared spectroscopy (FTIR) is an analytical spectroscopic technique increasingly being used as a potential tool for identification of microorganisms for diagnostic purposes. By employing mid-infrared (MIR) spectral data, it is not only possible to assess the chemical structures but also to achieve differentiation supported by multivariate statistic analysis. This work comprises a pilot study on differentiation of Leishmania species of the Old World (L. major, L. tropica, L. infantum, and L. donovani) as well as hybrids of distinct species by using vibrational spectroscopic fingerprints. Films of intact Leishmania parasites and their deoxyribonucleic acid (DNA) were characterized comparatively with respect to their biochemical nature and MIR spectral patterns. The strains’ hyperspectral datasets were multivariately examined by means of variance-based principal components analysis (PCA) and distance-based hierarchical cluster analysis (HCA). With the implementation of MIR spectral datasets we show that a phenotypic differentiation of Leishmania at species and intra-species level is feasible. Thus, FTIR spectroscopy can be further exploited for building up spectral databases of Leishmania parasites in view of high-throughput analysis of clinical specimens. For Leishmania species discrimination, sample films of intact parasites and their extracted DNA were analyzed by FTIR micro-spectroscopy. Hyperspectral datasets that comprise mid-infrared fingerprints were submitted to multivariate analysis tools such as principal components analysis (PCA) and hierarchical cluster analysis (HCA). ![]()
Collapse
|