1
|
Tavakoli P, Taghdisi SM, Maghami P, Abnous K. A novel aptasensor for colorimetric monitoring of tobramycin: Strategy of enzyme-like activity of AuNPs controlled by three-way junction DNA pockets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120626. [PMID: 34815175 DOI: 10.1016/j.saa.2021.120626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel colorimetric sensor was introduced to detect tobramycin (TOB) based on controlling the catalytic activity of gold nanoparticles (AuNPs) by the three-way junction aptamer pockets. In the absence of TOB, the surfaces of AuNPs were masked by the three-way junction pockets that prevented their catalytic activation for the reduction of 4-Nitrophenol in the presence of NaBH4. While the formation of the pockets was prevented in the presence of TOB that facilitated the 4-Nitrophenol access to AuNPs. Hence, the catalytic reduction of 4-Nitrophenol induced a color change of the solution from yellow to colorless, highlighting the presence of the target. The aptasensing assay provided good target specificity with a detection limit (LOD) of 1.16 µM and a linear dynamic range over 4-32 µM. The aptasensor was successfully applied to quantitatively monitor TOB in the human serum and milk samples with the LODs of 1.38 and 1.42 µM and recovery values of 94.87-105.75% and 93.75-105.31%, respectively.
Collapse
Affiliation(s)
- Parisa Tavakoli
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Piguillem SV, Regiart M, Bertotti M, Raba J, Messina GA, Fernández-Baldo MA. Microfluidic fluorescence immunosensor using ZnONFs for invasive aspergillosis determination. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Liu X, Jiang Y, Luo J, Guo X, Ying Y, Wen Y, Yang H, Wu Y. A SnO 2/Bi 2S 3-based photoelectrochemical aptasensor for sensitive detection of tobramycin in milk. Food Chem 2020; 344:128716. [PMID: 33267988 DOI: 10.1016/j.foodchem.2020.128716] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Abuse of tobramycin (TOB) causes a series of diseases. Therefore, the development of rapid and sensitive method for analyzing TOB in food products is necessary. In this work, aptamer modified SnO2/Bi2S3-based photoelectrochemical (PEC) sensor was developed for the determination of TOB in milk. Under optimal condition, a wide linear response for TOB from 5 to 50 nmol/L with a limit of detection of 4.28 nmol/L is reached. The possible detection mechanism is that TOB molecules are specifically captured by aptamer, increasing electron transfer resistance and declining the photocurrent. Thanks to the favorably matched energy level of SnO2, and Bi2S3, the PEC aptasensor exhibits high sensitivity, and with the aid of oxalate, the sensitivity of the sensor is further improved. Importantly, the stability of the PEC aptasensor is also satisfactory due to the calcination of SnO2/Bi2S3 at 450 °C.
Collapse
Affiliation(s)
- Xiao Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jing Luo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Yiping Wu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Serological and molecular rapid diagnostic tests for Toxoplasma infection in humans and animals. Eur J Clin Microbiol Infect Dis 2019; 39:19-30. [PMID: 31428897 PMCID: PMC7087738 DOI: 10.1007/s10096-019-03680-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023]
Abstract
Infection by Toxoplasma gondii is prevalent worldwide. The parasite can infect a broad spectrum of vertebrate hosts, but infection of fetuses and immunocompromised patients is of particular concern. Easy-to-perform, robust, and highly sensitive and specific methods to detect Toxoplasma infection are important for the treatment and management of patients. Rapid diagnostic methods that do not sacrifice the accuracy of the assay and give reproducible results in a short time are highly desirable. In this context, rapid diagnostic tests (RDTs), especially with point-of-care (POC) features, are promising diagnostic methods in clinical microbiology laboratories, especially in areas with minimal laboratory facilities. More advanced methods using microfluidics and sensor technology will be the future trend. In this review, we discuss serological and molecular-based rapid diagnostic tests for detecting Toxoplasma infection in humans as well as animals.
Collapse
|
5
|
Serological diagnosis of Toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Anal Biochem 2019; 564-565:116-122. [DOI: 10.1016/j.ab.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023]
|
6
|
Wang S, Li Z, Duan F, Hu B, He L, Wang M, Zhou N, Jia Q, Zhang Z. Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection. Anal Chim Acta 2018; 1047:150-162. [PMID: 30567645 DOI: 10.1016/j.aca.2018.09.064] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022]
Abstract
We reported a novel bimetallic cerium/copper-based metal organic framework (Ce/Cu-MOF) and its derivatives pyrolyzed at different temperatures, followed by exploiting them as the scaffold of electrochemical aptamer sensors for extremely sensitive detection of trace tobramycin (TOB) in human serum and milk. After the calcination at high temperature, the meal coordination centers (Ce and Cu) were transferred to metal oxides containing various chemical valences, such as Ce(III), Ce(IV), Cu(II) and Cu(0), which were embedded within the mesoporous carbon network originated from the organic ligands (represented by CeO2/CuOx@mC). Owning to the strong synergistic effect among the metal oxides, mesoporous carbon, and small cavities and open channels of MOF, the as-prepared CeO2/CuOx@mC nanocomposites not only possess good electrochemical activity but also exhibit strong bioaffinity toward the aptamer strands. By comparing the electrochemical biosensing peroformances using on the Ce/Cu-MOF- and the series of CeO2/CuOx@mC-based aptasensors, the constructed CeO2/CuOx@mC900-based (calcinated at 900 °C) aptasensor exhibits an extremely low detection limit of 2.0 fg mL-1 within a broad linear TOB concentration range from 0.01 pg mL-1 to 10 ng mg L-1. It demonstrates that the proposed aptasensor is substantially superior to those previously reported in the literature, along with high selectivity, good stability and reproducibility, and acceptable applicability in human serum and milk. Thereby, the newly fabricated aptasensing approach based on bimetallic CeO2/CuOx@mC has a considerable potential for the quantitative detection of antibiotics in the food safety and biomedical field.
Collapse
Affiliation(s)
- Shijun Wang
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Zhenzhen Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Fenghe Duan
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Nan Zhou
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China.
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
7
|
|
8
|
Ma Q, Wang Y, Jia J, Xiang Y. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chem 2018; 249:98-103. [PMID: 29407938 DOI: 10.1016/j.foodchem.2018.01.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/26/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022]
Abstract
Colorimetric aptasensors were designed for detection of tobramycin (TOB) based on unmodified gold nanoparticles (AuNPs) and single-strand DNA (ssDNA). In the absence of TOB, the DNA aptamer was coated on the surface of AuNPs to keep it against salt-induced aggregation. In the presence of TOB, aptamer will bind with TOB and detach from the surface of AuNPs because of higher affinities between aptamer and TOB. Then less protection of DNA may result in the aggregation of AuNPs by salt and an apparent color change from red to purple-blue. The developed aptasensors showed a high selectivity and sensitivity for TOB detection. The linearity range and the detection limit were 40-200 nM and 23.3 nM respectively. The validity of the procedure and applicability of aptasensors were successfully used to detect TOB in milk and chicken eggs, and the results were excellent in accord with the values obtained by spectrofluorimetric detection.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuxian Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jie Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
9
|
Wuethrich A, Quirino JP. Derivatisation for separation and detection in capillary electrophoresis (2015-2017). Electrophoresis 2017; 39:82-96. [PMID: 28758685 DOI: 10.1002/elps.201700252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/01/2023]
Abstract
Derivatisation is an integrated part of many analytical workflows to enable separation and detection of the analytes. In CE, derivatisation is adapted in the four modes of pre-capillary, in-line, in-capillary, and post-capillary derivatisation. In this review, we discuss the progress in derivatisation from February 2015 to May 2017 from multiple points of view including sections about the derivatisation modes, derivatisation to improve the analyte separation and analyte detection. The advancements in derivatisation procedures, novel reagents, and applications are covered. A table summarising the 46 reviewed articles with information about analyte, sample, derivatisation route, CE method and method sensitivity is provided.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Blanchaert B, Huang S, Wach K, Adams E, Van Schepdael A. Assay Development for Aminoglycosides by HPLC with Direct UV Detection. J Chromatogr Sci 2016; 55:197-204. [DOI: 10.1093/chromsci/bmw169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2016] [Indexed: 11/13/2022]
|
11
|
Nanostructured platform integrated into a microfluidic immunosensor coupled to laser-induced fluorescence for the epithelial cancer biomarker determination. Microchem J 2016. [DOI: 10.1016/j.microc.2016.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Domínguez-Vega E, Montealegre C, Marina ML. Analysis of antibiotics by CE and their use as chiral selectors: An update. Electrophoresis 2015; 37:189-211. [PMID: 26471773 DOI: 10.1002/elps.201500359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
The widespread use of antibiotics in medicine and as growth-promoting agents has increased the demand for suitable analytical techniques for their analysis. Analytical methods based on CE or miniaturized CE systems have proved over the years their ability for the analysis of antibiotics. Since our last review (Electrophoresis 2014, 35, 28-49) several new CE methodologies have been reported for antibiotic analysis. This review presents an update of the literature published from June 2013 to June 2015 for the analysis of antibiotics by CE. UV continues being the most used detection system for antibiotics analysis by CE. Strategies to improve sensitivity as the use of sensitive detection systems and the application of preconcentration techniques appear to be the major developments. Furthermore, the use of portable and miniaturized devices for antibiotic analysis is presented in detail. Applications of the developed methodologies to the determination of residues of antibiotics in biological, food, and environmental samples are carefully described. Finally, new developments and applications of antibiotics as chiral selectors in CE are also included.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Maria Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|