Berends AC, van de Haar MA, Krames MR. YAG:Ce
3+ Phosphor: From Micron-Sized Workhorse for General Lighting to a Bright Future on the Nanoscale.
Chem Rev 2020;
120:13461-13479. [PMID:
33164489 DOI:
10.1021/acs.chemrev.0c00618]
[Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The renowned yellow phosphor yttrium aluminum garnet (YAG) doped with trivalent cerium has found its way into applications in many forms: as powder of micron sized crystals, as a ceramic, and even as a single crystal. However, additional technological advancement requires providing this material in new form factors, especially in terms of particle size. Where many materials have been developed on the nanoscale with excellent optical properties (e.g., semiconductor quantum dots, perovskite nanocrystals, and rare earth doped phosphors), it is surprising that the development of nanocrystalline YAG:Ce is not as mature as for these other materials. Control over size and shape is still in its infancy, and optical properties are not yet at the same level as other materials on the nanoscale, even though YAG:Ce microcrystalline materials exceed the performance of most other materials. This review highlights developments in synthesis methods and mechanisms and gives an overview of the state of the art morphologies, particle sizes, and optical properties of YAG:Ce on the nanoscale.
Collapse