1
|
Kabir MZ, Tayyab H, Erkmen C, Mohamad SB, Uslu B. Comprehensive views toward the biomolecular recognition of an anticancer drug, leflunomide with human serum albumin. J Biomol Struct Dyn 2024; 42:7257-7271. [PMID: 37529911 DOI: 10.1080/07391102.2023.2239931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
Biomolecular association of an anticancer drug, leflunomide (LEF) with human serum albumin (HSA), the leading ligands carrier in human circulation was characterized using biophysical (i.e., fluorescence, absorption and voltammetric) methods and computational (i.e., molecular docking and molecular dynamics simulation) techniques. Evaluations of fluorescence, absorption and voltammetric findings endorsed the complex formation between LEF and HSA. An inverse relationship of Stern-Volmer constant-temperature and hyperchromic shift of the protein's absorption signal with addition of LEF confirmed the LEF quenched the HSA fluorescence through static process. Moderate nature of binding strength (binding constant = 2.76-4.77 × 104 M-1) was detected towards the LEF-HSA complexation, while the association process was naturally driven via hydrophobic interactions, van der Waals interactions and hydrogen bonds, as evident from changes in entropy (ΔS= + 19.91 J mol-1 K-1) and enthalpy (ΔH = - 20.09 kJ mol-1), and molecular docking assessments. Spectral analyses of synchronous and three-dimensional fluorescence validated microenvironmental fluctuations near Trp and Tyr residues upon LEF binding to the protein. LEF association with HSA significantly defended temperature-induced destabilization of the protein. Although LEF was found to attach to HSA at Sudlow's sites I and II, but exhibited greater preference toward its site I, as detected by the investigations of competitive site-marker displacement. Molecular dynamics simulation assessment revealed that the complex attained equilibrium throughout simulations, showing the LEF-HSA complex constancy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Zahirul Kabir
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Hafsa Tayyab
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cem Erkmen
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Liang W, Chen Y, Wei Y, Song Z, Li C, Zheng Y, Yi Z. Analysis of Binding Modes between Three Perfluorosulfonates and GPER Based on Computational Simulation and Multiple Spectral Methods. TOXICS 2024; 12:315. [PMID: 38787094 PMCID: PMC11125618 DOI: 10.3390/toxics12050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Perfluorinated compounds (PFCs) belong to a significant category of global environmental pollutants. Investigating the toxicological effects of PFCs within biological systems is of critical significance in various disciplines such as life sciences, environmental science, chemistry, and ecotoxicology. In this study, under simulated human physiological conditions (pH = 7.4), a combination of multiple spectroscopic techniques and computational simulations was employed to investigate the impact of perfluorinated compounds (PFCs) on the G protein-coupled estrogen receptor (GPER). Additionally, the research focused on exploring the binding modes and toxicological mechanisms between PFCs and GPER at the molecular level. All three perfluorinated sulfonic acids (PFSAs) can induce quenching of GPER fluorescence through static quenching and non-radiative energy transfer. Steady-state fluorescence calculations at different temperatures revealed apparent binding constants in the order of 106, confirming a strong binding affinity between the three PFSAs and GPER. Molecular docking studies indicated that the binding sites of PFSAs are located within the largest hydrophobic cavity in the head region of GPER, where they can engage in hydrogen bonding and hydrophobic interactions with amino acid residues within the cavity. Fourier transform infrared spectroscopy, three-dimensional fluorescence, and molecular dynamics simulations collectively indicate that proteins become more stable upon binding with small molecules. There is an overall increase in hydrophobicity, and alterations in the secondary structure of the protein are observed. This study deepens the comprehension of the effects of PFCs on the endocrine system, aiding in evaluating their potential impact on human health. It provides a basis for policy-making and environmental management while also offering insights for developing new pollution monitoring methods and drug therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (W.L.); (Y.C.)
| |
Collapse
|
3
|
Fatima S, Hussain I, Ahmed S, Afaq MA, Tabish M. Insight into the interaction of isochroman with bovine serum albumin: extensive experimental and computational investigations. J Biomol Struct Dyn 2024:1-15. [PMID: 38319026 DOI: 10.1080/07391102.2024.2310203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
The way therapeutic compounds interact with serum protein provides valuable information on their pharmacokinetics, toxicity, effectiveness, and even their structural-related information. Isochroman (IC) is a phytochemical compound obtained from the leaves of Olea europea plant. The derivatives of IC have various pharmacological properties including antidepressants, antihistamines, antiinflammation, anticonvulsants, appetite depressants, etc. The binding of small molecules to bovine serum albumin (BSA) is useful to ensure their efficacy. Thus, in this study, we have found out the binding mode of IC with BSA using several spectroscopic and in silico studies. UV and fluorescence spectroscopy suggested the complex formation between IC and BSA with a binding constant of 103 M-1. IC resulted in fluorescence quenching in BSA through static mechanism. The microenvironmental and conformational changes in BSA were confirmed using synchronous and three-dimensional studies. Site marker experiment revealed the IC binding in site-III of BSA. The influence of vitamins, metals and β-cyclodextrin (β-CD) on binding constant of IC-BSA complex was also examined. Circular dichroism spectra showed that α-helical of BSA decreased upon interaction with IC. Computational and experimental results were complimentary with one another and assisted in determining the binding sites, nature of bonds and amino acids included in the IC-BSA complex formation.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Abuzar Afaq
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
Hussain I, Fatima S, Tabish M. Unravelling the molecular interactions of phenyl isothiocyanate and benzoyl isothiocyanate with human lysozyme: Biophysical and computational analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123408. [PMID: 37717484 DOI: 10.1016/j.saa.2023.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phenyl isothiocyanate and benzoyl isothiocyanate are the phytochemicals present in the Brassicaceae family. They have antibacterial, antiapoptotic and antifungal properties. Protein-small molecule interaction studies are done to assess the changes in structure, dynamics, and functions of protein and to decipher the binding mechanism. This study is based on the comparative binding of PT and BT with human lysozyme using in vitro and computational techniques. UV, fluorescence emission, and FRET spectra gave insight into the complex formation, quenching mechanism, and binding parameters. Both PT and BT quenched the intrinsic fluorescence of Lyz by a static quenching mechanism. Synchronous, 3D fluorescence and CD spectroscopy substantiated conformational and microenvironmental alterations in the Lyz. The metal ions and β-cyclodextrin had a pronounced effect on the binding strength of Lyz-PT and Lyz-BT complexes. Accessible surface area analysis was determined to characterise the amino acid residue packing. Molecular docking further validated the wet lab experimental results.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India.
| |
Collapse
|
5
|
Povinelli APR, de Carvalho Bertozo L, Zazeri G, Ximenes VF. A flaw in applying the FRET technique to evaluate the distance between ligands and tryptophan residues in human serum albumin: Proposal of correction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112693. [PMID: 36947916 DOI: 10.1016/j.jphotobiol.2023.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Due to its primordial function as a drug carrier, human serum albumin (HSA) is extensively studied regarding its binding affinity with developing drugs. Förster resonance energy transfer (FRET) is frequently applied as a spectroscopic molecular ruler to measure the distance between the binding site and the ligand. In this work, we have shown that most of the published results that use the FRET technique to estimate the distance from ligands to the binding sites do not corroborate the crystallography data. By comparing the binding affinity of dansyl-proline with HSA and ovotransferrin, we demonstrated that FRET explains the quenching provoked by the interaction of ligands in albumin. So, why does the distance calculation via FRET not corroborate the crystallography data? We have shown that this inconsistency is related to the fact that a one-to-one relationship between donor and acceptor is not present in most experiments. Hence, the quenching efficiency used for calculating energy transfer depends on distance and binding constant, which is inconsistent with the correct application of FRET as a molecular ruler. We have also shown that the indiscriminate attribution of 2/3 to the relative orientation of transition dipoles of the acceptor and donor (κ2) generates inconsistencies. We proposed corrections based on the experimental equilibrium constant and theoretical orientation of transition dipoles to correct the FRET results.
Collapse
Affiliation(s)
- Ana Paula Ribeiro Povinelli
- Federal Institute of Education, Science and Technology of Mato Grosso, Campo Novo do Parecis, 78360-000, MT, Brazil
| | - Luiza de Carvalho Bertozo
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, SP, Brazil
| | - Gabriel Zazeri
- Federal Institute of Education, Science and Technology of Mato Grosso, Campo Novo do Parecis, 78360-000, MT, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, SP, Brazil.
| |
Collapse
|
6
|
Hussain I, Fatima S, Ahmed S, Tabish M. Biophysical and molecular modelling analysis of the binding of β-resorcylic acid with bovine serum albumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Triptolide and methotrexate binding competitively to bovine serum albumin: A study of spectroscopic experiments, molecular docking, and molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Huang ZY, Li XY, Hu LY, Bai AM, Hu YJ. Comparative study of two antipsychotic drugs binding to human serum albumin: By multispectroscopic and molecular docking methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Zhang N, Cui Z, Li M, Fan Y, Liu J, Wang W, Zhang Y, Liu Y. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11652-11666. [PMID: 36098631 DOI: 10.1021/acs.jafc.2c05559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Umami taste receptor type 1 member 1/3 (T1R1/T1R3) heterodimer has multiple ligand-binding sites, most of which are located in T1R1-Venus flytrap domain (T1R1-VFT). However, the critical binding process of T1R1-VFT/umami ligands remains largely unknown. Herein, T1R1-VFT was prepared with a sufficient amount and functional activity, and its binding characteristics with typical umami molecules (monosodium l-glutamate, disodium succinate, beefy meaty peptide, and inosine-5'-monophosphate) were explored via multispectroscopic techniques and molecular dynamics simulation. The results showed that, driven mainly by hydrogen bond, van der Waals forces, and electrostatic interactions, T1R1-VFT bound to umami compound at 1:1 (stoichiometric interaction) and formed T1R1-VFT/ligand complex (static fluorescence quenching) with a weak binding affinity (Ka values: 252 ± 19 to 1169 ± 112 M-1). The binding process was spontaneous and exothermic (ΔG, -17.72 to -14.26 kJ mol-1; ΔH, -23.86 to -12.11 kJ mol-1) and induced conformational changes of T1R1-VFT, which was mainly reflected in slight unfolding of α-helix (Δα-helix < 0) and polypeptide chain backbone structure. Meanwhile, the binding of the four ligands stabilized the active conformation of the T1R1-VFT pocket. This work provides insight into the binding interaction between T1R1-VFT/umami ligands and improves understanding of how umami receptor recognizes specific ligand molecules.
Collapse
Affiliation(s)
- Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mingyang Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuxia Fan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, P. R. China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
10
|
Tanaka Y, Okuyama H, Nishikawa M, Ikushiro SI, Ikeda M, Ishima Y, Ukawa Y, Oe K, Terao J, Mukai R. 8-Prenylnaringenin tissue distribution and pharmacokinetics in mice and its binding to human serum albumin and cellular uptake in human embryonic kidney cells. Food Sci Nutr 2022; 10:1070-1080. [PMID: 35432956 PMCID: PMC9007292 DOI: 10.1002/fsn3.2733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022] Open
Abstract
8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the C max of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Hitomi Okuyama
- Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| | - Miyu Nishikawa
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy Business Planning Daicel Corporation Tokyo Japan
| | - Kenichi Oe
- Healthcare SBU Business Strategy, R&D Daicel Corporation Niigata Japan
| | - Junji Terao
- Faculty of Clinical Nutrition and Dietetics Konan Women's University Hyogo Japan
| | - Rie Mukai
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan.,Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| |
Collapse
|
11
|
Hussain I, Fatima S, Ahmed S, Tabish M. Deciphering the biomolecular interaction of β-resorcylic acid with human lysozyme: A biophysical and bioinformatics outlook. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Huang ZY, Li XY, Wang ZH, Hu LY, Tu XC, Hu YJ. Synthesis of novel 3-fluorooxindoles and their affinity probing with serum albumin: Using multi-spectral, electrochemical, and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Exploring the interaction of bavachin and its glycoside derivatives with bovine serum albumin using spectroscopic and molecular docking approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Khan MS, Rehman MT, Ismael MA, AlAjmi MF, Alruwaished GI, Alokail MS, Khan MR. Bioflavonoid (Hesperidin) Restrains Protein Oxidation and Advanced Glycation End Product Formation by Targeting AGEs and Glycolytic Enzymes. Cell Biochem Biophys 2021; 79:833-844. [PMID: 34110566 DOI: 10.1007/s12013-021-00997-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Alpha-amylase (α-amylase) not long ago has acquire recognition as a possible drug target for the management of diabetes. Here, we have investigated the binding and enzyme activity of α-amylase by hesperidin; a naturally occurring flavanone having wide therapeutic potential. Hesperidin exerted an inhibitory influence on α-amylase activity with an IC50 value of 16.6 µM. Hesperidin shows a significant binding toward α-amylase with a binding constant (Ka) of the order of 104 M-1. The evaluation of thermodynamic parameters (∆H and ∆S) suggested that van der Waals force and hydrogen bonding drive seemingly specific hesperidin-α-amylase complex formation. Glycation and oxidation studies were performed using human serum albumin (HSA) as ideal protein. Hesperidin inhibited fructosamine content ≈40% at 50 µM and inhibited advanced glycation end products (AGEs) formation by 71.2% at the same concentration. Moreover, significant recovery was evident in free -SH groups and carbonyl content of HSA. Additionally, molecular docking also entrenched in vitro observations and provided an insight into the important residues (Trp58, Gln63, His101, Glu233, Asp300, and His305) at the heart of hesperidin-α-amylase interaction. This study delineates mechanistic insight of hesperidin-α-amylase interaction and provides a platform for use of hesperidin to treat AGEs directed diseases.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ismael
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghaida I Alruwaished
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Cosmetic Department, National Drug and Cosmetic Control Laboratory, Saudi Food and Drug Authority (SFDA), Riyadh, 11561, Saudi Arabia
| | - Majed S Alokail
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Li X, Liu H, Wu X, Xu R, Ma X, Zhang C, Song Z, Peng Y, Ni T, Xu Y. Exploring the interactions of naringenin and naringin with trypsin and pepsin: Experimental and computational modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119859. [PMID: 33957444 DOI: 10.1016/j.saa.2021.119859] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Naringenin and naringin are two natural compounds with important health benefits, whether as food or drug. It is necessary to study the interactions between naringenin/naringin and digestive proteases, such as trypsin and pepsin. In this study, the bindings of naringenin and naringin to trypsin and pepsin were investigated using multi-spectroscopy analysis and computational modeling approaches. Fluorescence experiments indicate that both naringenin and naringin can quench the intrinsic fluorescence of trypsin/pepsin via static quenching mechanism. Naringin binds trypsin/pepsin in a more firmly way than naringenin. Thermodynamic analysis reveals that the interactions of naringenin/naringin and trypsin/pepsin are synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic, electrostatic interactions and hydrogen bonding. Synchronous fluorescence spectroscopy, circular dichroism spectroscopy and FT-IR show that naringenin/naringin may induce microenvironmental and conformational changes of trypsin and pepsin. Molecular docking reveals that naringenin binds in the close vicinity of the active site (Ser-195) of trypsin and Asp-32 (the catalytic activity of pepsin) appears in naringin-pepsin system. The direct interactions between naringenin or naringin and catalytic amino acid residues will inhibit the catalytic activity of trypsin and pepsin, respectively. The results of molecular dynamic simulation validate the reliability of the docking results.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hongyi Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xinzhe Wu
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiaoyi Ma
- Grade 2018, Pharmaceutics, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Congxiao Zhang
- Grade 2018, Pharmaceutics, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yanru Peng
- Grade 2017, Clinical Pharmacy, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Tianjun Ni
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
16
|
Liao X, Zhu C, Huang D, Wen X, Zhang SL, Shen Y. Profiling the interaction of a novel toxic pyruvate dehydrogenase kinase inhibitor with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119733. [PMID: 33827040 DOI: 10.1016/j.saa.2021.119733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To discover novel pyruvate dehydrogenase kinase (PDK) inhibitors, a new compound 2,2-dichloro-1-(4-((4-isopropylphenyl)amino)-3-nitrophenyl)ethan-1-one, namely XB-1 was identified, which inhibited PDK activity with a half maximal inhibitory concentration (IC50) value of 337.0 nM, and reduced A549 cell proliferation with a half maximal effective concentration (EC50) value of 330.0 nM. However, the compound appears to exhibit a negligible selectivity between cancer cell and normal one, indicating a potential toxicity existed for the compound. Herein, the interaction of the toxic XB-1 to human serum albumin (HSA) was firstly explored by spectroscopic approaches with the aim to reduce/avoid the toxicity of PDK inhibitors in the next hit-to-lead campaign. In detail, it was found that the XB-1 could effectively bind to HSA mainly via hydrogen bond interaction in PBS buffer (pH = 7.4, 10.0 mM), resulting in the formation of HSA-XB-1 complex. The negative value of ΔG showed that the binding of XB-1 to HSA is a spontaneous process. The result from site-selective binding assay suggested that the XB-1 bound to the site I of HSA by competing with warfarin, which was perfect in agreement with the molecular docking method. The results of this paper may offer a valuable theoretical basis to study the toxicity of biofunctional molecules and may offer thoughts about how to avoid/reduce toxicity for a small molecule.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ding Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
17
|
Tanzadehpanah H, Mahaki H, Moradi M, Afshar S, Moghadam NH, Salehzadeh S, Najafi R, Amini R, Saidijam M. The Use of Molecular Docking and Spectroscopic Methods for Investigation of The Interaction Between Regorafenib with Human Serum Albumin (HSA) and Calf Thymus DNA (Ct-DNA) In The Presence Of Different Site Markers. Protein Pept Lett 2021; 28:290-303. [PMID: 32957871 DOI: 10.2174/0929866527666200921164536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interactions of drugs with DNA and proteins may modify their biological activities and conformations, which effect transport and biological metabolism of drugs. OBJECTIVE In this study the interaction of anticancer drug regorafenib (REG) with calf thymus-DNA (ct-DNA) and human serum albumin (HSA) has been investigated Methods: Hence, for the first time, it was discovered interaction between REG with DNA and HSA using multi-spectroscopic, zeta potential measurements and molecular docking method. RESULTS AND DISCUSSION DNA displacement studies showed that REG does not have any effect on acridine orange and methylene blue bound DNA, though it was substantiated by displacement studies with Hoechst (as groove binder). Furthermore, the different concentrations of REG induce slight changes in the viscosity of ct-DNA. Zeta potential parameters indicated that hydrophobic interaction plays a major role in the DNA-REG complex. Results obtained from molecular docking demonstrate that the REG prefers to bind on the minor groove of DNAs than that of the major groove. Binding properties of HSA reveal that intrinsic fluorescence of HSA could be quenched by REG in a static mode. The competitive experiments in the presence of warfarin and ibuprofen (as site markers) suggested that the binding site of REG to HSA was most probably located in the subdomain IIA. Measurements of the zeta potential indicated that REG bound to HSA mainly by both electrostatic and hydrophobic interactions. It was found on docking procedures that REG could fit well into HSA subdomain IIA, which confirmed the experimental results. CONCLUSION In conclusion, REG can be delivered by HSA in a circulatory system and affect DNA as potential target.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Moradi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
López-Yerena A, Perez M, Vallverdú-Queralt A, Escribano-Ferrer E. Insights into the Binding of Dietary Phenolic Compounds to Human Serum Albumin and Food-Drug Interactions. Pharmaceutics 2020; 12:E1123. [PMID: 33233356 PMCID: PMC7700232 DOI: 10.3390/pharmaceutics12111123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
The distribution of drugs and dietary phenolic compounds in the systemic circulation de-pends on, among other factors, unspecific/specific reversible binding to plasma proteins such as human serum albumin (HSA). Phenolic substances, present in plant-derived feeds, foods, beverages, herbal medicines, and dietary supplements, are of great interest due to their biological activity. Recently, considerable research has been directed at the formation of phenol-HSA complexes, focusing above all on structure-affinity relationships. The nucleophilicity and planarity of molecules can be altered by the number and position of hydroxyl groups on the aromatic ring and by hydrogenation. Binding affinities towards HSA may also differ between phenolic compounds in their native form and conjugates derived from phase II reactions. On the other hand, food-drug interactions may increase the concentration of free drugs in the blood, affecting their transport and/or disposition and in some cases provoking adverse or toxic effects. This is caused mainly by a decrease in drug binding affinities for HSA in the presence of flavonoids. Accordingly, to avoid the side effects arising from changes in plasma protein binding, the intake of flavonoid-rich food and beverages should be taken into consideration when treating certain pathologies.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.)
| | - Maria Perez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Mechanistic inhibition of non-enzymatic glycation and aldose reductase activity by naringenin: Binding, enzyme kinetics and molecular docking analysis. Int J Biol Macromol 2020; 159:87-97. [DOI: 10.1016/j.ijbiomac.2020.04.226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
|
20
|
Shahabadi N, Zendehcheshm S, Momeni BZ, Abbasi R. Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2(bu2bpy)]: multi-spectroscopic analysis, atomic force microscopy, and computational studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1775821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Badri Z Momeni
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | - Reyhaneh Abbasi
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| |
Collapse
|
21
|
Liu Y, Chen H, Xiang H, Lei H, Zhang D, Qiu Y, Xu L. Inhibition and molecular mechanism of diosmetin against xanthine oxidase by multiple spectroscopies and molecular docking. NEW J CHEM 2020. [DOI: 10.1039/d0nj00679c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Studying the inhibition and molecular mechanism of diosmetin against xanthine oxidase helps to develop natural product xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Yongjie Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science
- Wuhan Polytechnic University
- Wuhan 430023
- China
- School of Biology and Pharmaceutical Engineering
| | - Hao Chen
- School of Chemistry and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Huilong Xiang
- Hubei Key Laboratory of Animal Nutrition and Feed Science
- Wuhan Polytechnic University
- Wuhan 430023
- China
- School of Biology and Pharmaceutical Engineering
| | - Huan Lei
- School of Biology and Pharmaceutical Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- China
| | - Di Zhang
- School of Biology and Pharmaceutical Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science
- Wuhan Polytechnic University
- Wuhan 430023
- China
| | - Lingyun Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science
- Wuhan Polytechnic University
- Wuhan 430023
- China
- School of Biology and Pharmaceutical Engineering
| |
Collapse
|
22
|
Beneficial and detrimental effects of the phytochemical naringenin on rainbow trout intestinal epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Wang J, Ding Y, Zhou W. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways. Int J Pharm 2019; 574:118940. [PMID: 31830578 DOI: 10.1016/j.ijpharm.2019.118940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Abstract
Activated hepatic stellate cells (HSCs) have a central role in the progression of liver fibrosis and express a large amount of secreted protein, acidic and rich in cysteine (SPARC), a specific protein-binding protein. In this study, we reported the preparation and evaluation of naringenin (Nar) -loaded albumin self-modified liposomes (NaAlLs), which delivered Nar, a specific Smad3 inhibitor that blocked the TGF-β/Smad3 signaling pathway and played an anti-fibrosis role. After a series of characterization, it was found that NaAlLs had favorable dispersion (PDI < 0.15) with an average particle size of about 120 nm and high entrapment efficiency (>85%), albumin coated the surface of liposomes or embedded in phospholipid bilayer by interaction with the encapsulated naringenin and phospholipid molecules during the preparation of liposomes. The amount of albumin modified to the surface of NaAlLs by this method is not only more than that of the physical adsorption method, but also the binding force between albumin and liposomes is stronger. The albumin modified to the surface of NaAlLs greatly reduced the aggregation of liposomes and drug leakage and increased the stability of liposomes. More importantly, the uptake of NaAlLs by activated HSCs was 1.5 times higher than that of Nar-loaded liposomes (NaLs), suggesting that NaAlLs specifically increased targeting of activated HSCs via albumin and SPARC-dependent pathways. As expected, NaAlLs was more effective in improving liver fibrosis than the NaLs or the inclusion complex solution of Nar and Hydroxypropyl-β-cyclodextrin (NaICS). The results suggested that NaAlLs was a promising drug delivery system, which could target drug delivery to activated HSC for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jianzhu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yu Ding
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
24
|
Mohammadnia F, Fatemi MH, Taghizadeh SM. Study on the interaction of anti-inflammatory drugs with human serum albumin using molecular docking, quantitative structure-activity relationship, and fluorescence spectroscopy. LUMINESCENCE 2019; 35:266-273. [PMID: 31766079 DOI: 10.1002/bio.3723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
The interaction of 14 anti-inflammatory drugs with human serum albumin (HSA) was investigated using fluorescence quenching, molecular docking studies, and quantitative structure-activity relationship (QSAR) methodology. Binding of anti-inflammatory drugs to HSA plays a fundamental role in their transport, distribution, delivery, and elimination. Binding constants of these drugs to HSA, obtained using the fluorescence quenching method, were within the range 0.01 × 104 M-1 (acetaminophen) to 1881.05 × 104 M-1 (meloxicam). Binding sites and binding constants of these anti-inflammatory drugs were estimated using molecular docking. Inspection of the obtained values for docking score, logKb and Kb , showed that the drugs in this data set have a relatively strong binding constant for HSA. QSAR modelling was applied for binding constants obtained from fluorescence quenching and theoretical molecular descriptors. This modelling led to a linear two-parameter model with a correlation coefficient of 0.95 and adequate robustness. The descriptor results showed the importance of a bonding network and electronegativity as the discriminative structural factors in binding affinity for the HSA molecule.
Collapse
Affiliation(s)
- F Mohammadnia
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - M H Fatemi
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - S M Taghizadeh
- Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Islamic Republic of Iran
| |
Collapse
|
25
|
Abstract
The intake of flavanones, the predominant flavonoid in the Citrus genus in human diets is variable but considerable. It is thus unsurprising that they have attracted interest for their claimed positive effects on health. However, to substantiate any purported impact on health and decipher the underlying mechanism(s), knowledge of pharmacokinetics is crucial. The aim of this article is to review currently known aspects of the fate of flavanones in the organism including absorption, metabolism, distribution, and excretion as well as possible kinetic interactions with clinically used drugs. There are three principal keynotes: (1) The level of parent flavanones in plasma is negligible. The major reason for this is that although flavanones are absorbed into enterocytes after oral intake, they are rapidly metabolized, in particular, into conjugates, sulfates and glucuronides, which are the major forms circulating in plasma. (2) A large fraction reaches the colon where it is efficiently metabolized into small absorbable phenolics. (3) The form (aglycone vs. glycoside) and species (e.g. human vs. rat) have important impact. In conclusion, knowledge of the pharmacokinetics of flavanones, in particular of metabolites, their achievable plasma concentration and half-lives, should be borne in mind when their biological effects are investigated.
Collapse
Affiliation(s)
- Iveta Najmanová
- Faculty of Pharmacy, Department of Biological and Medical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Marie Vopršalová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Charles University, Hradec Králové, Czech Republic
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Přemysl Mladěnka
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Oguz M, Bhatti AA, Dogan B, Karakurt S, Durdagi S, Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies. J Biomol Struct Dyn 2019; 38:3801-3813. [PMID: 31526236 DOI: 10.1080/07391102.2019.1668301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Naringenin is considered as an important flavonoid in phytochemistry because of its important effect on cancer chemoprevention. Unfortunately its poor solubility has restricted its therapeutic applications. In this study, an efficient water-soluble fluorescent calix[4]arene (compound 5) was synthesized as host macromolecule to increase solubility and cytotoxicity in cancer cells of water-insoluble naringenin as well as to clarify localization of naringenin into the cells. Complex formed by host-guest interaction between compound 5 and naringenin was analyzed with UV-visible, fluorescence, FTIR spectroscopic techniques and molecular modeling studies. Stern-Volmer analysis showed binding constant value of Ksv 3.5 × 107 M-1 suggesting strong interaction between host and guest. Binding capacity shows 77% of naringenin was loaded on compound 5. Anticarcinogenic effects of naringenin complex were evaluated on human colorectal carcinoma cells (DLD-1) and it was found that 5-naringenin complex inhibits proliferation of DLD-1 cells 3.4-fold more compared to free naringenin. Fluorescence imaging studies show 5-naringenin complex was accumulated into the cytoplasm instead of the nucleus. Increased solubility and cytotoxicity of naringenin with fluorescent calix[4]arene makes it one of the potential candidates as a therapeutic enhancer. For deep understanding of host-guest interaction mechanisms, complementary multiscale molecular modeling studies were also carried out.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Chemistry, Government College University Hyderabad, Hyderabad, Pakistan
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
27
|
Chen H, Wang G, Sun L, Zhang H, Sun M, Sun J, Shang L, Luo C. Regulating the alky chain length of fatty acid-didanosine prodrugs and evaluating its role in albumin binding. Drug Deliv Transl Res 2018; 8:21-31. [PMID: 28944416 DOI: 10.1007/s13346-017-0428-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design of prodrugs for efficient albumin binding shows distinct advantages in drug delivery in terms of drug availability, systemic circulation, and potential targeting effect. And fatty acids are good candidates due to their high affinity to albumin. However, how the alkyl chain length of fatty acids affects the binding dynamics between prodrugs and albumin, despite its importance, is still unclear. In the present study, three prodrugs of didanosine (DDI) and fatty acids were designed and synthesized to evaluate the effect of the alkyl chain length on prodrug-albumin binding process, including capric acid-didanosine (CA-DDI), myristic acid-didanosine (MA-DDI), and stearic acid-didanosine (SA-DDI). The binding dynamics between these prodrugs with bovine serum albumin (BSA) were studied by fluorometry, circular dichroism (CD), UV analysis, and molecular docking. It turned out that DDI itself showed poor binding affinity to BSA. In contrast, CA-DDI, MA-DDI, and SA-DDI demonstrated significantly improved binding affinity. Interestingly, the binding affinity between DDI prodrugs and BSA was correlated with the alkyl chain length of fatty acids, and the binding constant significantly increased with the extension of alkyl chain length (KCA-DDI = 5.86 × 103 M-1, KMA-DDI = 8.57 × 103 M-1, and KSA-DDI = 11.42 × 103 M-1 at 298 K).
Collapse
Affiliation(s)
- Hongxiang Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Gang Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Lanzhen Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Huicong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Lei Shang
- College of Basic Medical Sciences, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110016, People's Republic of China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
28
|
Investigations of the molecular interactions between nisoldipine and human serum albumin in vitro using multi-spectroscopy, electrochemistry and docking studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Tanzadehpanah H, Mahaki H, Moghadam NH, Salehzadeh S, Rajabi O, Najafi R, Amini R, Saidijam M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J Biomol Struct Dyn 2018; 37:823-836. [DOI: 10.1080/07391102.2018.1441073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Omid Rajabi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Huang S, Xie J, Cui J, Liu L, Liang Y, Liu Y, Xiao Q. Comparative investigation of binding interactions between three steroidal compounds and human serum albumin: Multispectroscopic and molecular modeling techniques. Steroids 2017; 128:136-146. [PMID: 28962852 DOI: 10.1016/j.steroids.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/10/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023]
Abstract
Steroidal compounds have attracted great attentions in biomedical and pharmacological areas. The investigation of structural influences during protein-compound interactions helps in understanding both the biological effects and the mechanism behind bioactivities of steroidal compounds. Herein, the structural influences of three steroidal complexes were investigated based on their binding interactions with human serum albumin (HSA) by multispectroscopic methods and molecular modeling techniques. Three steroidal compounds bonded with HSA to form three HSA-compound complexes, and van der Waals force and hydrogen bond played major roles in stabilizing these complexes. Detailed binding conformation of three steroidal compounds and HSA was further investigated by molecular modeling techniques. The changes of microenvironments and conformations of HSA were significant and the biological activity of HSA was weakened in the present of three steroidal compounds. The space steric hindrance was responsible for differences in the binding interactions between HSA and three steroidal compounds. These results provided the molecular understanding of binding interactions of protein with steroidal compounds and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Jiangning Xie
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Jianguo Cui
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| | - Liang Liu
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yu Liang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yi Liu
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Qi Xiao
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
31
|
In vitro binding comparison of cephalosporins to human serum albumin by spectroscopy and molecular docking approaches: A novel structural pursuing. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Teradal NL, Satpati AK, Seetharamappa J. A facile one-pot hydrothermal synthesis of tin sulfide-decorated reduced graphene oxide nanoribbons and its sensing application for a flavanone naringenin. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Wang SJ, Peng YL, Zhang CG, Ma QP, Peng XX, Ren LL. Synthesis of Tailed Metalloporphyrins Modified with 2-Chloronicotinic Acid and Interactions with Human Serum Albumin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shu Jun Wang
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Yu Ling Peng
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Cheng Gen Zhang
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Qi Peng Ma
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Xiao Xia Peng
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Li Lei Ren
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| |
Collapse
|
34
|
Yin MM, Dong P, Chen WQ, Xu SP, Yang LY, Jiang FL, Liu Y. Thermodynamics and Mechanisms of the Interactions between Ultrasmall Fluorescent Gold Nanoclusters and Human Serum Albumin, γ-Globulins, and Transferrin: A Spectroscopic Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5108-5116. [PMID: 28489408 DOI: 10.1021/acs.langmuir.7b00196] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Noble metal nanoclusters (NCs) show great promise as nanoprobes for bioanalysis and cellular imaging in biological applications due to ultrasmall size, good photophysical properties, and excellent biocompatibility. In order to achieve a comprehensive understanding of possible biological implications, a series of spectroscopic measurements were conducted under different temperatures to investigate the interactions of Au NCs (∼1.7 nm) with three model plasmatic proteins (human serum albumin (HSA), γ-globulins, and transferrin). It was found that the fluorescence quenching of HSA and γ-globulins triggered by Au NCs was due to dynamic quenching mechanism, while the fluorescence quenching of transferrin by Au NCs was a result of the formation of a Au NC-transferrin complex. The apparent association constants of the Au NCs bound to HSA, γ-globulins, and transferrin demonstrated no obvious difference. Thermodynamic studies demonstrated that the interaction between Au NCs and HSA (or γ-globulins) was driven by hydrophobic forces, while the electrostatic interactions played predominant roles in the adsorption process for transferrin. Furthermore, it was proven that Au NCs had no obvious interference in the secondary structures of these three kinds of proteins. In turn, these three proteins had a minor effect on the fluorescence intensity of Au NCs, which made fluorescent Au NCs promising in biological applications owing to their chemical and photophysical stability. In addition, by comparing the interactions of small molecules, Au NCs, and large nanomaterials with serum albumin, it was found that the binding constants were gradually increased with the increase of particle size. This work has elucidated the interaction mechanisms between nanoclusters and proteins, and shed light on a new interaction mode different from the protein corona on the surface of nanoparticles, which will highly contribute to the better design and applications of fluorescent nanoclusters.
Collapse
Affiliation(s)
- Miao-Miao Yin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Ping Dong
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Wen-Qi Chen
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Shi-Ping Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Li-Yun Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
- College of Chemistry and Material Science, Guangxi Teachers Education University , Nanning 530001, People's Republic of China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
- College of Chemistry and Material Science, Guangxi Teachers Education University , Nanning 530001, People's Republic of China
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology , Wuhan 430081, People's Republic of China
| |
Collapse
|
35
|
Zhang L, Xiao Q, Wang Y, Zhang C, He W, Yin L. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery. Int J Pharm 2017; 523:1-14. [PMID: 28323094 DOI: 10.1016/j.ijpharm.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022]
Abstract
Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiran Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chenshuang Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
36
|
Yuan L, Liu M, Liu G, Li D, Wang Z, Wang B, Han J, Zhang M. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:584-592. [PMID: 27776313 DOI: 10.1016/j.saa.2016.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.
Collapse
Affiliation(s)
- Lixia Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Guiqin Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Dacheng Li
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhengping Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Bingquan Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Zhang
- School of Agriculture, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
37
|
Maity S, Chakraborty S, Chakraborti AS. Critical insight into the interaction of naringenin with human haemoglobin: A combined spectroscopic and computational modeling approaches. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Cheng LY, Fang M, Bai AM, Ouyang Y, Hu YJ. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach. LUMINESCENCE 2017; 32:873-879. [DOI: 10.1002/bio.3267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Li-Yang Cheng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry; Hubei Normal University; Huangshi 435002 People's Republic of China
| | - Min Fang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry; Hubei Normal University; Huangshi 435002 People's Republic of China
| | - Ai-Min Bai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry; Hubei Normal University; Huangshi 435002 People's Republic of China
| | - Yu Ouyang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry; Hubei Normal University; Huangshi 435002 People's Republic of China
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry; Hubei Normal University; Huangshi 435002 People's Republic of China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
39
|
Wang LH, Wang MS, Zeng XA, Xu XM, Brennan CS. Membrane and genomic DNA dual-targeting of citrus flavonoid naringenin against Staphylococcus aureus. Integr Biol (Camb) 2017; 9:820-829. [DOI: 10.1039/c7ib00095b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naringenin exerts its antibacterial action by disruption of the cytoplasmic membrane and DNA targeting effects inStaphylococcus aureus.
Collapse
Affiliation(s)
- Lang-Hong Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Man-Sheng Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Institute of Bast Fiber Crops
| | - Xin-An Zeng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering
- School of Electrical and Information Engineering
- Jiangsu University of Technology
- Changzhou 213000
- China
| | - Charles S. Brennan
- Department of Wine
- Food and Molecular Biosciences
- Lincoln University
- Canterbury
- New Zealand
| |
Collapse
|
40
|
Brodowska K, Correia I, Garribba E, Marques F, Klewicka E, Łodyga-Chruscińska E, Pessoa JC, Dzeikala A, Chrusciński L. Coordination ability and biological activity of a naringenin thiosemicarbazone. J Inorg Biochem 2016; 165:36-48. [DOI: 10.1016/j.jinorgbio.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
|
41
|
Tayyab S, Izzudin MM, Kabir MZ, Feroz SR, Tee WV, Mohamad SB, Alias Z. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:386-394. [PMID: 27424099 DOI: 10.1016/j.jphotobiol.2016.06.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
Abstract
Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.
Collapse
Affiliation(s)
- Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mohamad Mirza Izzudin
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Zahirul Kabir
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shevin R Feroz
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei-Ven Tee
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Zazali Alias
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Wei Y, Niu L, Liu X, Zhou H, Dong H, Kong D, Li Y, Li Q. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:154-161. [PMID: 27049867 DOI: 10.1016/j.saa.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, (1)H, (13)C, (119)Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310K were 2.51×10(7) and 3.09×10(5), respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.
Collapse
Affiliation(s)
- Ying Wei
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lin Niu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xinxin Liu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Hongyan Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Hongzhou Dong
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Depeng Kong
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
43
|
Nan G, Wang P, Sun J, Lv J, Ding M, Yang L, Li Y, Yang G. Spectroscopy and molecular docking study on the interaction of daidzein and genistein with pepsin. LUMINESCENCE 2016; 31:1524-1531. [DOI: 10.1002/bio.3139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Guanjun Nan
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology; Xi'an No.4 Hospital; Shaanxi 710004 People's Republic of China
| | - Jing Sun
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Jianhua Lv
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Meiwen Ding
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Liu Yang
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Yiping Li
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Guangde Yang
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| |
Collapse
|
44
|
Tu B, Li RR, Liu ZJ, Chen ZF, Ouyang Y, Hu YJ. Structure-activity relationship study between baicalein and wogonin by spectrometry, molecular docking and microcalorimetry. Food Chem 2016; 208:192-8. [PMID: 27132840 DOI: 10.1016/j.foodchem.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/06/2016] [Accepted: 04/04/2016] [Indexed: 11/25/2022]
Abstract
Flavones (e.g. baicalein and wogonin) extensively used worldwide in food preparation and traditional medicine. In this study, a systematically comparative study of their structure-activity relationships (SAR) on their interaction with BSA, antioxidant activity and antibacterial activity has been carried out by spectrometry, molecular docking and microcalorimetry. Our results show that the skeleton structure of flavones, the number of hydroxyl groups, the type of functional group, conjugated system and the steric hindrance may be responsible for their different biological activity. These findings not only would lay a scientific foundation for discovering and designing flavones-based food and drug, may also help us to understanding the structure-activity relationship between flavones at the molecular level.
Collapse
Affiliation(s)
- Bao Tu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Rong-Rong Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Zhi-Juan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Zhi-Feng Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Yu Ouyang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Yan-Jun Hu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
45
|
Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S. Interaction of an anticancer drug, gefitinib with human serum albumin: insights from fluorescence spectroscopy and computational modeling analysis. RSC Adv 2016. [DOI: 10.1039/c6ra12019a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Binding orientation of the GEF in the binding site III, located in subdomain IB of HSA.
Collapse
Affiliation(s)
- Md. Zahirul Kabir
- Biomolecular Research Group
- Biochemistry Programme
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Wei-Ven Tee
- Bioinformatics Programme
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- Kuala Lumpur
| | - Saharuddin B. Mohamad
- Bioinformatics Programme
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- Kuala Lumpur
| | - Zazali Alias
- Biomolecular Research Group
- Biochemistry Programme
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Saad Tayyab
- Biomolecular Research Group
- Biochemistry Programme
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| |
Collapse
|
46
|
Tu B, Chen ZF, Liu ZJ, Li RR, Ouyang Y, Hu YJ. Study of the structure-activity relationship of flavonoids based on their interaction with human serum albumin. RSC Adv 2015. [DOI: 10.1039/c5ra12824b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The influence of functional groups on the interaction has been studied detailed here; fluorescence quenching degrees and the conformation change are considered through multiple methods; molecular docking has been introduced to verify related results.
Collapse
Affiliation(s)
- Bao Tu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Zhi-Feng Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Zhi-Juan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Rong-Rong Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yu Ouyang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yan-Jun Hu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| |
Collapse
|
47
|
Tu B, Liu ZJ, Chen ZF, Ouyang Y, Hu YJ. Understanding the structure–activity relationship between quercetin and naringenin: in vitro. RSC Adv 2015. [DOI: 10.1039/c5ra22551e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interactions of quercetin and naringenin with DNA have been studied at molecular level, which may throw light on their structure–activity relationships, helpful for the design of analogs flavonoids and their application in drug industries.
Collapse
Affiliation(s)
- Bao Tu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Zhi-Juan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Zhi-Feng Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yu Ouyang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yan-Jun Hu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| |
Collapse
|