1
|
Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules 2018; 23:molecules23082013. [PMID: 30104466 PMCID: PMC6222626 DOI: 10.3390/molecules23082013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 11/16/2022] Open
Abstract
In this work, six complexes (2⁻7) of Cr(III) and Co(II) transition metals with triazole ligands were synthesized and characterized. In addition, a new ligand, 3,5-bis(1,2,4-triazol-1-ylmethyl)toluene (1), was synthesized and full characterized. The complexes were obtained as air-stable solids and characterized by melting point, electrical conductivity, thermogravimetric analysis, and Raman, infrared and ultraviolet/visible spectroscopy. The analyses and spectral data showed that complexes 3⁻7 had 1:1 (M:L) stoichiometries and octahedral geometries, while 2 had a 1:2 (M:L) ratio, which was supported by DFT calculations. The complexes and their respective ligands were evaluated against bacterial and fungal strains with clinical relevance. All the complexes showed higher antibacterial and antifungal activities than the free ligands. The complexes were more active against fungi than against bacteria. The activities of the chromium complexes against Candida tropicalis are of great interest, as they showed minimum inhibitory concentration 50 (MIC50) values between 7.8 and 15.6 μg mL-1. Complexes 5 and 6 showed little effect on Vero cells, indicating that they are not cytotoxic. These results can provide an important platform for the design of new compounds with antibacterial and antifungal activities.
Collapse
|
2
|
Dahmani R, Ben Yaghlane S, Boughdiri S, Mogren Al-Mogren M, Prakash M, Hochlaf M. Insights on the interaction of Zn 2+ cation with triazoles: Structures, bonding, electronic excitation and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:375-384. [PMID: 29272808 DOI: 10.1016/j.saa.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
At present, we investigate the structures, the stability, the bonding and the spectroscopy of the Zn2+-triazole complexes (Zn2+-Tz), which are subunits of triazolate based porous materials and Zn-enzymes. This theoretical work is performed using ab initio methods and density functional theory (DFT) where dispersion correction is included. Through these benchmarks, we establish the ability and reliability of M05-2X+D3 and PBE0+D3 functionals for the correct description of Zn2+-Tz bond since these DFTs lead to close agreement with post Hartree-Fock methods. Therefore, M05-2X+D3 and PBE0+D3 functionals are recommended for the characterization of larger organometallic complexes formed by Zn and N-rich linkers. For Zn2+-Tz, we found two stable σ-type complexes: (i) a planar structure where Zn2+ links to unprotonated nitrogen and (ii) an out-of-plane cluster where carbon interacts with Zn2+. The most stable isomers consist on a coordinated covalent bond between the lone pair of unprotonated nitrogen and the vacant 4s orbital of Zn2+. The roles of covalent interactions within these complexes are discussed after vibrational, NBO, NPA charges and orbital analyses. The bonding is dominated by charge transfer from Zn2+ to Tz and intramolecular charge transfer, which plays a vital role for the catalytic activity of these complexes. These findings are important to understand, at the microscopic level, the structure and the bonding within triazolate based macromolecular porous materials and Zn-enzymes.
Collapse
Affiliation(s)
- R Dahmani
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France; Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis, Tunisia; Unité de Recherche Physico-Chimie des Matériaux à l'Etat Condensé, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia
| | - S Ben Yaghlane
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - S Boughdiri
- Unité de Recherche Physico-Chimie des Matériaux à l'Etat Condensé, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia
| | - M Mogren Al-Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - M Prakash
- SRM Research Institute and Department of Chemistry, SRM University, Kattankulathur 603203, Tamilnadu, India
| | - M Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| |
Collapse
|