1
|
Proskynitopoulou V, Garagounis I, Vourros A, Dimopoulos Toursidis P, Lorentzou S, Zouboulis A, Panopoulos K. Nutrient recovery from digestate: Pilot test experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120166. [PMID: 38280247 DOI: 10.1016/j.jenvman.2024.120166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
A series of technologies have been employed in pilot-scale to process digestate, i.e. the byproduct remaining after the anaerobic digestion of agricultural and other wastes, with the aim of recovering nutrients and reducing the load of solids and organics from it, hence improving the quality of digestate for potential subsequent reuse. In this case the digestate originated from a mixture of dairy and animal wastes and a small amount of agricultural wastes. It was processed by the application of several treatments, applied in series, i.e. microfiltration, ultrafiltration, reverse osmosis, selective electrodialysis and combined UV/ozonation. The initially applied membrane filtration methods (micro- and ultra-filtration) removed most of the suspended solids and macromolecules with a combined efficiency of more than 80%, while the reverse osmosis (at the end) removed almost all the remaining solutes (85-100%), producing sufficiently clarified water, appropriate for potential reuse. In the selective electrodialysis unit over 95% of ammonium and potassium were recovered from the feed, along with 55% of the phosphates. Of the latter, 75% was retrieved in the form of struvite.
Collapse
Affiliation(s)
- Vera Proskynitopoulou
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece; Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Garagounis
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Anastasios Vourros
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Panagiotis Dimopoulos Toursidis
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Souzana Lorentzou
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Anastasios Zouboulis
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Panopoulos
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| |
Collapse
|