1
|
Sui HY, Chen D, Huang JP, Hu ZY, Hu L, Shi JH, Jiang SL. Exploring the binding characteristics between lorlatinib and human alpha-1-acid glycoprotein: Multispectral and molecular modeling techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125197. [PMID: 39368180 DOI: 10.1016/j.saa.2024.125197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024]
Abstract
Approval in 2019 was granted for the highly selective, targeted agent lorlatinib, which primary target is ROS1 and ALK. The purpose of this work was to examine the binding mechanism between lorlatinib (LOR) and HAG employing multispectral and molecular modeling techniques. Fluorescence data demonstrated that LOR quenched HAG fluorescence as a static quenching, interecalated into the hydrophobic cavity of HAG with a moderate affinity. Thermodynamic and competitive experiments pointed out that LOR bound with HAG primarily through hydrogen bonding, hydrophobic, and van der Waals forces. Circular dichroism, three-dimensional and synchronous fluorescence spectroscopic studies noted that the secondary structure of HAG and microenvironments around tyrosine (Tyr) and tryptophan (Trp) residues were altered due to binding with LOR. The contribution of each energy involved in binding process of LOR and HAG has been analyzed by molecular simulation techniques. Besides, the environmental conditions with metal ions have also been studied. The present study is expected to provide a theoretical basis for further studying the metabolism of LOR in vivo, which may help to gain a deeper understanding of the general pharmacological activity of the drug.
Collapse
Affiliation(s)
- Huan-Yu Sui
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong Chen
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia-Ping Huang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
2
|
Hu ZY, Sui HY, Zhong QF, Hu L, Shi JH, Jiang SL, Han L. In vitro investigation of the binding characteristics of dacomitinib to human α 1-acid glycoprotein: Multispectral and computational modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124197. [PMID: 38554689 DOI: 10.1016/j.saa.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Dacomitinib is a highly selective second-generation tyrosine kinase inhibitor that can irreversibly bind to tyrosine kinase and is mainly used in the treatment of lung cancer. The binding characteristics of dacomitinib with human α 1-acid glycoprotein (HAG) were analyzed by multispectral and computational simulation techniques. The fluorescence spectra showed that dacomitinib can quench the fluorescence of HAG by forming the HAG-dacomitinib complex with a molar ratio of 1:1 (static quenching). At the temperature similar to that of the human body, the affinity of dacomitinib to HAG (8.95 × 106 M-1) was much greater than that to BSA (3.39 × 104 M-1), indicating that dacomitinib will give priority to binding onto HAG. Thermodynamics parameters analysis and driving force competition experiments showed that hydrogen bonding and hydrophobic forces were the major sources for keeping the complex of HAG-dacomitinib stable. The experimental outcomes also showed that the binding of dacomitinib can lead to the loosening of the skeleton structure of HAG, which led to a slight change in the secondary structure, and also reduces the hydrophobicity of the microenvironment of Trp and Tyr residues. The binding sites of dacomitinib on HAG and the contribution of key amino acid residues to the binding reaction were determined by molecular docking and molecular dynamics (MD) simulation. In addition, it was found that there was a synergistic effect between dacomitinib and Mg2+ and Co2+ ions. Mg2+ and Co2+ could increase the Kb of dacomitinib to HAG and prolong the half-life of dacomitinib.
Collapse
Affiliation(s)
- Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huan-Yu Sui
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qi-Feng Zhong
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
3
|
Kubczak M, Grodzicka M, Michlewska S, Karimov M, Ewe A, Aigner A, Bryszewska M, Ionov M. The effect of novel tyrosine-modified polyethyleneimines on human albumin structure - Thermodynamic and spectroscopic study. Colloids Surf B Biointerfaces 2023; 227:113359. [PMID: 37209597 DOI: 10.1016/j.colsurfb.2023.113359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The interaction of proteins with nanoparticle components are crucial for the evaluation of nanoparticle function, toxicity and biodistribution. Polyethyleneimines (PEIs) with defined tyrosine modifications are a class of novel polymers designed for improved siRNA delivery. Their interactions with biomacromolecules are still poorly described. This paper analyzes the interaction of different tyrosine-modified PEIs with human serum albumin as the most abundant serum protein. The ability of tyrosine modified, linear or branched PEIs to bind human serum albumin (HSA) was analyzed and further characterized. The interaction with hydrophobic parts of protein were studied using 1- nilinonaphthalene-8-sulfonic acid (ANS) and changes in the HSA secondary structure were evaluated using circular dichroism (CD). Complex formation and sizes were studied by transmission electron microscopy (TEM) and dynamic light scattering methods (DLS). We demonstrate that tyrosine modified PEIs are able to bind human serum albumin. Based on thermodynamic studies, van der Waals interaction, H-bonding and hydrophobic interactions are determined as main molecular forces involved in complex formation. Analysis of secondary structures revealed that the polymers decreased α-helix content, while increasing levels of randomly folded structures. Complex formation was confirmed by TEM and DLS. These findings are crucial for understanding polymer-protein interactions and the properties of nanoparticles.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland.
| | - Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; BioMedChem Doctoral School of the UL and Lodz Institutes of the Polish Academy of Science, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland, Banacha 12/16, 90-237 Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
El Tokhy SS, Elgizawy SA, Osman MA, Goda AE, Unsworth LD. Tailoring dexamethasone loaded albumin nanoparticles: A full factorial design with enhanced anti-inflammatory activity In vivo. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Study on the interaction of sweet protein (thaumatin) with key aroma compounds in passion fruit juice using electronic nose, ultraviolet spectrum, thermodynamics, and molecular docking. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Hango CR, Davis HC, Uddin EA, Minter LM, Tew GN. Increased block copolymer length improves intracellular availability of protein cargo. Polym Chem 2022. [DOI: 10.1039/d2py00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic protein transduction domain mimics (PTDMs) of various lengths were used for protein delivery in Jurkat T cells. Although longer PTDMs facilitated greater cargo internalization, shorter PTDMs yielded greater cargo activity.
Collapse
Affiliation(s)
- Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Hazel C. Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Esha A. Uddin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
7
|
Abeyratne-Perera HK, Basu S, Chandran PL. Shells of compacted DNA as nanocontainers transporting proteins in multiplexed delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112184. [PMID: 34225845 DOI: 10.1016/j.msec.2021.112184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Polyethyleneimine (PEI) polymers are known to compact DNA strands into spheroid, toroid, or rod structures. A formulation with mannose-grafted PEI (PEIm), however, was reported to compact DNA into ~100 nm spheroids that indented like thin-walled pressurized shells. The goal of the study is to understand why mannose bristles divert the traditional pathway of PEI-DNA compaction to produce shell-like structures, and to manipulate the process so that proteins can be packed into the core of the assembling shells for co-delivering DNA and proteins into cells. DLS, AFM, and TEM imaging provide a consistent picture that BSA proteins can be packed into the shells without altering the shell architecture, as long as the proteins were added during the time course of shell assembly. Force spectroscopy studies reveal that DNA shells that buckle also have a rich surface-coating of mannose, indicating that a micelle-like partitioning of hydrophobic and hydrophilic layers governs shell assembly. When HEK293T cells are spiked with BSA-laden DNA shells, co-transfection of DNA and BSA is observed at higher levels than control formulations. Distinct micron-sized features appear having both green fluorescence from BSA-FITC and blue fluorescence from NucBlue DNA stain, suggesting BSA release in nucleus and secretory granules. With DNA nanocontainers, proteins can take advantage of the efficiency of PEI-based DNA transfection for hitchhiking into cells while being shielded from the challenges of the intracellular route. DNA nanocontainers are rapid to assemble, not dependent on the DNA sequence, and can be adapted for different protein types; thereby having potential to serve as a high-throughput platform in scenarios where DNA and protein have to be released at the same site and time within cells (e.g., theranostics, multiplexed co-delivery, gene editing).
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America
| | - Saswati Basu
- Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America
| | - Preethi L Chandran
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America; Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America.
| |
Collapse
|
8
|
Xu X, Du C, Ren Z, Zhang M, Ma L. Conformational Change and Activity Enhancement of Rabbit Muscle Lactate Dehydrogenase Induced by Polyethyleneimine. ACS OMEGA 2021; 6:10859-10865. [PMID: 34056239 PMCID: PMC8153759 DOI: 10.1021/acsomega.1c00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
For a better understanding on the interaction between polyethyleneimine (PEI) and proteins, spectroscopic studies including UV-vis absorption, resonance Rayleigh scattering, fluorescence, and circular dichroism were conducted to reveal the conformational change of rabbit muscle lactate dehydrogenase (rmLDH) and related to the bioactivity of the enzyme. Regardless of the electrostatic repulsion, PEI could bind on the surface of rmLDH, a basic protein, via hydrogen binding of the dense amine groups and hydrophobic interaction of methyl groups. The competitive binding by PEI led to a reduction of the binding efficiency of rmLDH toward β-nicotinamide adenine dinucleotide, the coenzyme, and sodium pyruvate, the substrate. However, the complex formation with PEI induced a less ordered conformation and an enhanced surface hydrophobicity of rmLDH, facilitating the turnover of the enzyme and generally resulting in an increased activity. PEI of higher molecular weight was more efficient to induce alteration in the conformation and catalytic activity of the enzyme.
Collapse
Affiliation(s)
| | | | | | | | - Lin Ma
- .
Phone: +86-771-3233718. Fax: +86-0771-3233718
| |
Collapse
|
9
|
Parray MUD, AlOmar SY, Alkhuriji A, Wani FA, Parray ZA, Patel R. Refolding of guanidinium hydrochloride denatured bovine serum albumin using pyridinium based ionic liquids as artificial chaperons. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Samaddar S, Mazur J, Boehm D, Thompson DH. Development And In Vitro Characterization Of Bladder Tumor Cell Targeted Lipid-Coated Polyplex For Dual Delivery Of Plasmids And Small Molecules. Int J Nanomedicine 2019; 14:9547-9561. [PMID: 31824150 PMCID: PMC6900316 DOI: 10.2147/ijn.s225172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bladder cancer is the fourth most common cancer in men and eleventh most common in women. Combination therapy using a gene and chemotherapeutic drug is a potentially useful strategy for treating bladder cancer in cases where a synergistic benefit can be achieved successfully. This approach relies on developing drug combinations using carrier systems that can load both hydrophilic genes and hydrophobic drugs. Ideally, the formulation for carrier system should be free of traditional high shear techniques such as sonication and extrusion to reduce shear-induced nucleic acid strand breakage. Moreover, the system should be able to protect the nucleic acid from enzymatic attack and deliver it specifically to the tumor site. MATERIALS AND METHODS A dual payload carrier system that was formulated using a simple flow mixing technique to complex anionic plasmid (EGFP-NLS) using a cationic polymer (CD-PEI2.5kD) followed by coating of the polyplex using lipid membranes. The resulting lipid-coated polyplex (LCP) formulations are targeted to bladder cancer cells by employing a bacterial adhesive peptide sequence, RWFV, that targets the LCP to the tumor stroma for efficiently delivering reporter plasmid, EGFP-NLS and a model small molecule drug, pyrene, to the cancer cells. RESULTS Encapsulation efficiency of the peptide targeted carrier for the plasmid was 50% ± 0.4% and for pyrene it was 16% ± 0.4%. The ability of the targeted LCP to transfect murine bladder cancer cells was 4-fold higher than LCP bearing a scrambled peptide sequence. Fluorescence of cells due to pyrene delivery was highest after 4 hrs using targeted LCP. Finally, we loaded the peptide targeted LCP with anti-cancer agent, curcumin. The targeted formulation of curcumin resulted in only 45% viable cancer cells at a concentration of 5 µg/mL, whereas the empty and non-targeted formulations did not result any significant cell death. CONCLUSION These results demonstrate the specificity of the targeting peptide sequence in engaging tumor cells and the utility of the developed carrier platform to deliver a dual payload to bladder tumor cells.
Collapse
Affiliation(s)
- Shayak Samaddar
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| | - Joshua Mazur
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| | - Devin Boehm
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| | - David H Thompson
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| |
Collapse
|
11
|
Guan G, Song B, Zhang J, Chen K, Hu H, Wang M, Chen D. An Effective Cationic Human Serum Albumin-Based Gene-Delivery Carrier Containing the Nuclear Localization Signal. Pharmaceutics 2019; 11:E608. [PMID: 31766300 PMCID: PMC6920835 DOI: 10.3390/pharmaceutics11110608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Considerable effort has been devoted to the development of gene carriers over the years. However, toxicity, immunogenicity, and low transfection efficiency are still major barriers. How to overcome these obstacles has become a burning question in gene delivery. In the present study, a simple cationic human serum albumin (CHSA)-based gene-delivery system containing nuclear localization signals (NLSs) was constructed to conquer the limitations. CHSA/NLS/plasmid DNA (pDNA) complexes were prepared and characterized by Hoechst 33258 intercalation, gel retardation assay, morphological analysis, circular dichroism (CD) spectroscopy, particle size, and zeta potential measurements. Results showed that CHSA/NLS/pDNA complexes were able to condense and protect pDNA with high encapsulation efficiency. The complexes displayed a nutritional effect on cells at a low concentration and there was no significant cytotoxicity or immunogenicity. In addition, CHSA/NLS/pDNA complexes exhibited excellent cellular uptake rates and the mechanism was mainly the clathrin or macropinocytosis-dependent endocytosis pathway. Furthermore, CHSA/NLS/pDNA significantly enhanced gene expression efficiency in vitro. More importantly, CHSA/NLS/pDNA complexes showed a desired antitumor effect in vivo, exhibiting the highest inhibition rate (57.3%) and significant upregulation in p53 protein. All these results confirm that CHSA/NLS/pDNA complexes have a bright future as a safe and effective delivery system for gene therapy.
Collapse
Affiliation(s)
- Guannan Guan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Baohui Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Jie Zhang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing 314001, China;
| | - Kang Chen
- Department of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China;
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Mingyue Wang
- Department of Pharmacy, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| |
Collapse
|
12
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
13
|
Wang F, Mo J, Huang A, Zhang M, Ma L. Effects of interaction with gene carrier polyethyleneimines on conformation and enzymatic activity of pig heart lactate dehydrogenase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:217-224. [PMID: 29935393 DOI: 10.1016/j.saa.2018.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Polyethyleneimine (PEI) has long been considered as "golden standard" for polymeric gene delivery carrier, however also induces cytotoxicity. To make a further insight into the molecular basis of PEI cytotoxicity, fluorescence, absorption and circular dichroism spectroscopy were conducted to investigate the influence of PEI (average molecular weight 25,000 and 1800 Da) on the conformation of pig heart lactate dehydrogenase (LDH) and its catalytic efficiency. Zeta-potential measurement and isothermal titration calorimetry were used to reveal the interaction between PEI and LDH. PEI was found to bind onto the surface of LDH predominantly via hydrophobic interaction, inducing a more compact conformation and an increased surface hydrophobicity of the enzyme. The conformational change of LDH induced by PEI binding had little influence on the complex formation between LDH and reduced nicotinamide adenine dinucleotide (NADH, the co-enzyme). However, the nonspecific binding of PEI on the surface of LDH retarded the turnover of the enzyme. Meanwhile, the large quantity of amine groups on the polymer chain made PEI subject to form complexes with NADH and pyruvate (the substrate) via hydrogen bond and electrostatic interaction, which greatly reduced the binding efficient of LDH. The polymer size played an important role in PEI-LDH interaction. The smaller size of lower molecular weight PEI facilitated the close contact with LDH and consequential reduction of the turnover number of the enzyme. However, higher molecular weight PEI was more favorable for competitive binding with NADH and pyruvate and generally decreased the catalytic efficient of LDH.
Collapse
Affiliation(s)
- Fan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Junyong Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
14
|
Wang F, Wang X, Zhang M, Huang A, Ma L. Conformational change of lysozyme on the interaction with gene carrier polyethyleneimine. Int J Biol Macromol 2018; 117:532-537. [DOI: 10.1016/j.ijbiomac.2018.05.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 11/25/2022]
|
15
|
Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, Jahandideh S, Movahedpour A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. NANO REVIEWS & EXPERIMENTS 2018; 9:1488497. [PMID: 30410712 PMCID: PMC6171788 DOI: 10.1080/20022727.2018.1488497] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
Abstract
The meaning of gene therapy is the delivery of DNA or RNA to cells for the treatment or prevention of genetic disorders. The success rate of gene therapy depends on the progression and safe gene delivery system. The vectors available for gene therapy are divided into viral and non-viral systems. Viral vectors cause higher transmission efficiency and long gene expression, but they have major problems, such as immunogenicity, carcinogenicity, the inability to transfer large size genes and high costs. Non-viral gene transfer vectors have attracted more attention because they exhibit less toxicity and the ability to transfer large size genes. However, the clinical application of non-viral methods still faces some limitations, including low transmission efficiency and poor gene expression. In recent years, numerous methods and gene-carriers have been developed to improve gene transfer efficiency. The use of Polyethylenimine (PEI) based transfer of collaboration may create a new way of treating diseases and the combination of chemotherapy and gene therapy. The purpose of this paper is to introduce the PEI as an appropriate vector for the effective gene delivery.
Collapse
Affiliation(s)
- Abbas Zakeri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Beigi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Ali Reza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ayoob Karimi Zade
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmail Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jahandideh
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Millan S, Kumar A, Satish L, Susrisweta B, Dash P, Sahoo H. Insights into the binding interaction between copper ferrite nanoparticles and bovine serum albumin: An effect on protein conformation and activity. LUMINESCENCE 2018; 33:990-998. [DOI: 10.1002/bio.3499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Sabera Millan
- Department of Chemistry, National Institute of Technology (NIT); Rourkela Odisha India
| | - Aniket Kumar
- Department of Chemistry, National Institute of Technology (NIT); Rourkela Odisha India
| | - Lakkoji Satish
- Department of Chemistry, National Institute of Technology (NIT); Rourkela Odisha India
| | - B. Susrisweta
- Department of Chemistry, National Institute of Technology (NIT); Rourkela Odisha India
| | - Priyabrat Dash
- Department of Chemistry, National Institute of Technology (NIT); Rourkela Odisha India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology (NIT); Rourkela Odisha India
| |
Collapse
|
17
|
Huang A, Wei B, Mo J, Wang Y, Ma L. Conformation and activity alteration of horseradish peroxidase induced by the interaction with gene carrier polyethyleneimines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:90-98. [PMID: 28697412 DOI: 10.1016/j.saa.2017.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/06/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Polyethyleneimine (PEI) has long been considered as "golden standard" for polymeric gene delivery carriers. However the molecular basis of the cytotoxicity of PEI is poorly understood. Little is known about the effects of PEI on the structure and functions of biomacromolecules. In this work, fluorescence, UV-vis absorption, circular dichroism spectroscopy were conducted to investigate the influence of PEI of average molecular weight 25, 10 and 1.8kDa (denoted as PEI25k, PEI10k and PEI1.8k) on the conformation of horseradish peroxidase (HRP) and its catalytic efficiency. Zeta-potential measurement and isothermal titration calorimetry were used to reveal the mechanism of the interaction between PEIs and HRP. PEIs were found to bind onto the surface of HRP predominantly via hydrophobic interaction and hydrogen bond or van der Waals interaction. The complex formation between HRP and PEI induced a more compact conformation of the enzyme and an increased hydrophobicity of the microenvironment surrounding heme pocket. The conformational change of HRP had little impact on the affinity towards H2O2 and phenol. However, the increase in the non-planarity of porphyrin ring in the heme group led to an increase in the exposure degree of the active center and thus an enhancement of catalytic efficiency of HRP in the presence of high molecular weight PEIs (PEI25k and PEI10k). The polymer size played an important role in PEI-HRP interaction. PEI of low molecular weight (PEI1.8k) was less efficient to alter the conformation and catalytic activity of HRP in aqueous solutions.
Collapse
Affiliation(s)
- Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Bangzhi Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Junyong Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
18
|
Liu G, Fang Z, Yuan M, Li W, Yang Y, Jiang M, Ouyang Y, Yuan W. Biodegradable Carriers for Delivery of VEGF Plasmid DNA for the Treatment of Critical Limb Ischemia. Front Pharmacol 2017; 8:528. [PMID: 28848442 PMCID: PMC5552722 DOI: 10.3389/fphar.2017.00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The safe and efficient delivery of therapeutic nucleic acid is a prerequisite for an effective DNA therapy. In this study, we condensed the low molecular weight polyethylenimine (PEI, 1.8k Da) with 2,6-pyridinedicarboxaldehyde (PDA), both of which are degradable in vivo, to synthesize a biodegradable polycationic material (PDAPEI) to deliver vascular endothelial growth factor (VEGF) plasmid DNA (pDNA). Particle size and zeta potential of this novel degradable PEI derivatives-pDNA nanoparticle were investigated and in vitro cytotoxicity was estimated on human umbilical vein endothelial cells (HUVECs). Using pDNA-encoding VEGF-A and green fluorescence protein (GFP), we also checked transfection efficiency of the vector (PDAPEI) and found its excellent performance at 40 w/w ratio. We successfully established peripheral ischemia animal model on C57/BL6J mice to evaluate the therapeutic effect of PDAPEI/pVEGF-A polyplex system on ischemic disease and a conclusion was made that PDAPEI is a promising gene vector in the treatment of peripheral ischemic artery disease (PAD).
Collapse
Affiliation(s)
- Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Minglu Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Weimin Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Mier Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital, Shanghai University of Medicine and HealthShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|