Design and Molecular Modeling of Abiraterone-Functionalized Gold Nanoparticles.
NANOMATERIALS 2018;
8:nano8090641. [PMID:
30131467 PMCID:
PMC6164775 DOI:
10.3390/nano8090641]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
The aim of our work was the synthesis and physicochemical characterization of a unique conjugate consisting of gold nanoparticles (AuNPs) and a pharmacologically active anticancer substance abiraterone (AB). The direct coupling of AB with gold constitutes an essential feature of the unique AuNPs–AB conjugate that creates a promising platform for applications in nanomedicine. In this work, we present a multidisciplinary, basic study of the obtained AuNPs–AB conjugate. Theoretical modeling based on the density functional theory (DFT) predicted that the Aun clusters would interact with abiraterone preferably at the N-side. A sharp, intense band at 1028 cm−1 was observed in the Raman spectra of the nanoparticles. The shift of this band in comparison to AB itself agrees well with the theoretical model. AB in the nanoparticles was identified by means of electrochemistry and NMR spectroscopy. The sizes of the Au crystallites measured by XRPD were about 9 and 17 nm for the nanoparticles obtained in pH 7.4 and 3.6, respectively. The size of the particles as measured by TEM was 24 and 30 nm for the nanoparticles obtained in pH 7.4 and pH 3.6, respectively. The DLS measurements revealed stable, negatively charged nanoparticles.
Collapse