1
|
Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. OPTICS EXPRESS 2020; 28:9738-9752. [PMID: 32225575 DOI: 10.1364/oe.387027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, the incorporation between gold modified-tyrosinase (Tyr) enzyme based graphene oxide (GO) thin film with surface plasmon resonance (SPR) technique has been developed for the detection of phenol. SPR signal for the thin film contacted with phenol solution was monitored using SPR technique. From the SPR curve, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analyzed. The sensor produces a linear response for phenol up to 100 µM with sensitivity of 0.00193° µM-1. Next, it can be observed that deionized water has the lowest FWHM, with a value of 1.87° and also the highest value of DA. Besides, the SNR of the SPR signal was proportional to the phenol concentrations. Furthermore, the surface morphology of the modified thin film after exposed with phenol solution observed using atomic force microscopy showed a lot of sharp peaks compared to the image before in contact with phenol proved the interaction between the thin film and phenol.
Collapse
|
2
|
Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci Rep 2019; 9:7659. [PMID: 31114011 PMCID: PMC6529438 DOI: 10.1038/s41598-019-44051-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/03/2019] [Indexed: 01/11/2023] Open
Abstract
The development of a multiplexed sensing platform is necessary for highly selective, sensitive, and rapid screening of specific antibiotics. In this study, we designed a novel multiplex aptasensor for antibiotics by fluorescence resonance energy transfer (FRET) strategy using DNase I-assisted cyclic enzymatic signal amplification (CESA) method combined with aptamer/graphene oxide complex. The aptamers specific for sulfadimethoxine, kanamycin, and ampicillin were conjugated with Cyanine 3 (Cy3), 6-Carboxyfluorescein (FAM), and Cyanine 5 (Cy5), respectively, and graphene oxide (GO) was adopted to quench the fluorescence of the three different fluorophores with the efficiencies of 94.36%, 93.94%, and 96.97% for Cy3, FAM, and Cy5, respectively. CESA method was used for sensitive detection, resulting in a 2.1-fold increased signal compared to those of unamplified method. The aptasensor rapidly detected antibiotics in solution with limit of detection of 1.997, 2.664, and 2.337 ng/mL for sulfadimethoxine, kanamycin, and ampicillin, respectively. In addition, antibiotics dissolved in milk were efficiently detected with similar sensitivities. Multiplexed detection test proved that the fluorescently modified aptamers could work separately from each other. The results indicate that the aptasensor offers high specificity for each antibiotic and enables simultaneous and multicolor sensing for rapid screening of multiple antibiotics at the same time.
Collapse
|
3
|
Zhang Z, Xiang X, Shi J, Huang F, Xia X, Zheng M, Han L, Tang H. A cationic conjugated polymer and graphene oxide: Application to amplified fluorescence detection of sinapine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:370-374. [PMID: 29886167 DOI: 10.1016/j.saa.2018.05.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
An amplified fluorescence strategy is described for the detection of sinapine (SP) by using a cationic conjugated polymer (PFP) and graphene oxide (GO). It is observed that the fluorescein (FAM)-labeled single-stranded DNA (FAM-DNA) is absorbed on the surface of GO if SP is absent. This causes that fluorescence resonance energy transfer (FRET) from PFP to FAM is inefficient when adding PFP into FAM-DNA/GO complex. If SP is added to FAM-DNA/GO complex, FAM-DNA is desorbed from GO surface due to the competitive binding of SP and FAM-DNA toward GO. In this case, FAM-DNA is close to PFP in the presence of PFP through strong electrostatic interaction, leading to the occurrence of efficient FRET. Based on the above phenomenon, we demonstrate a method to amplify fluorescence signal of traditional GO-based SP assay by introducing PFP. In comparison to the use of single GO, the combination of PFP with GO-based strategy displays high turn-on ratio and enhanced sensitivity with a limit of detection as low as 7.3 ng mL-1 for SP detection. Satisfactory results in practical samples are also obtained by the recovery experiments, demonstrating the potential application of cationic conjugated polymer in plant-derived small molecule.
Collapse
Affiliation(s)
- Zhen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Jianbin Shi
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei Province, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ling Han
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| |
Collapse
|
4
|
Zhang Z, Yang J, Pang W, Yan G. An aptamer-based fluorescence probe for facile detection of lipopolysaccharide in drinks. RSC Adv 2017. [DOI: 10.1039/c7ra10710b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An alternative fluorescence strategy for specific and convenient detection of lipopolysaccharide in drink was developed.
Collapse
|