1
|
Karar M, Pal A, Dey N. Exploring the time-dependent and wavelength-guided tunable binary and ternary logic behaviours of a charge-transfer probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39377566 DOI: 10.1039/d4ay01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This study presents the development of a novel time-dependent logic behaviour system and a state-of-the-art inter-switchable ternary molecular logic system, comprising 3-input INHIBIT and 3-input TRANSFER logic gates driven by elementary chemical interactions. The absorption spectra of the probe molecule underwent versatile time-dependent changes upon the individual and simultaneous addition of two analytes, namely F- and CN-, leading to alterations in the logic behaviour observed at both the 295 nm (from AND to TRANSFER) and 400 nm bands (from OR to INHIBIT). Additionally, we explored the creation of wavelength-guided molecular logic systems that leverage reversible (F- and H2O) and irreversible (CN- and H2O) chemical interactions. By employing CN- and H2O as dual chemical inputs, we derived binary TRANSFER, 2-input PASS 0, and binary COMPLEMENT logic gates based on the opto-chemical responses at 295 nm, 400 nm, and 500 nm, respectively. Lastly, we introduced an innovative inter-switchable ternary molecular logic system, involving 3-input INHIBIT and 3-input TRANSFER logic gates, using F-, CN-, and H2O as ternary chemical inputs, capitalizing on the probes' versatile and distinct absorption responses at varying wavelengths (400 and 295 nm, respectively).
Collapse
Affiliation(s)
- Monaj Karar
- MLR Institute of Technology, Hyderabad, Telangana-500 043, India
| | - Animesh Pal
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana-500078, India.
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana-500078, India.
| |
Collapse
|
2
|
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:ph16030381. [PMID: 36986481 PMCID: PMC10056067 DOI: 10.3390/ph16030381] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery.
Collapse
|
3
|
Naphthalimide-Piperazine Derivatives as Multifunctional "On" and "Off" Fluorescent Switches for pH, Hg 2+ and Cu 2+ Ions. Molecules 2023; 28:molecules28031275. [PMID: 36770945 PMCID: PMC9918953 DOI: 10.3390/molecules28031275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Novel 1,8-naphthalimide-based fluorescent probes NI-1 and NI-2 were designed and screened for use as chemosensors for detection of heavy metal ions. Two moieties, methylpyridine (NI-1) and hydroxyphenyl (NI-2), were attached via piperazine at the C-4 position of the napthalimide core resulting in a notable effect on their spectroscopic properties. NI-1 and NI-2 are pH sensitive and show an increase in fluorescence intensity at around 525 nm (switch "on") in the acidic environment, with pKa values at 4.98 and 2.91, respectively. Amongst heavy metal ions only Cu2+ and Hg2+ had a significant effect on the spectroscopic properties. The fluorescence of NI-1 is quenched in the presence of either Cu2+ or Hg2+ which is attributed to the formation of 1:1 metal-ligand complexes with binding constants of 3.6 × 105 and 3.9 × 104, respectively. The NI-1 chemosensor can be used for the quantification of Cu2+ ions in sub-micromolar quantities, with a linear range from 250 nM to 4.0 μM and a detection limit of 1.5 × 10-8 M. The linear range for the determination of Hg2+ is from 2 μM to 10 μM, with a detection limit of 8.8 × 10-8 M. Conversely, NI-2 behaves like a typical photoinduced electron transfer (PET) sensor for Hg2+ ions. Here, the formation of a complex with Hg2+ (binding constant 8.3 × 103) turns the green fluorescence of NI-2 into the "on" state. NI-2 showed remarkable selectivity towards Hg2+ ions, allowing for determination of Hg2+ concentration over a linear range of 1.3 μM to 25 μM and a limit of detection of 4.1 × 10-7 M.
Collapse
|
4
|
Three and four inputs combinational logic circuits based on a azo-azomethine chemosensor for the detection of Ni2+ and CN−/OAC− ions: Experimental and DFT studies. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shaikh SA, Bhat SS, Hegde PL, Revankar VK, S. N, Kumara K, Lokanath N, Butcher RJ. Influence of counter ions on supramolecular structures of copper(II) complexes derived from 1,8-naphthalimide tecton. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Oguz A, Oguz M, Kursunlu AN, Yilmaz M. A fully water-soluble Calix[4]arene probe for fluorometric and colorimetric detection of toxic hydrosulfide and cyanide ions: Practicability in living cells and food samples. Food Chem 2022; 401:134132. [PMID: 36115237 DOI: 10.1016/j.foodchem.2022.134132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022]
Abstract
Although hydrosulfide and cyanide anions play important roles in daily life that they are available in a lot of foods. However, their excess amounts contaminate water, land, and food and cause serious problems to human health. Herein, we introduce a water-soluble macrocyclic sensor based-on Calix[4]arene (MPI-Calix[4]) with dual response sites for fluorescence recognizing cyanide (CN-) and hydrogen sulfide (HS-) under longwave light. MPI-Calix[4] exhibits a high selectivity and sensitivity in the detection of CN- and HS-, where the limits of detection were as low as 0.115 and 8.12 μmol/L, respectively. The cell imaging studies shows that this probe can be easily used in the detection of CN- and HS- on living cells. Full understanding of these results paved a fruitful system to improve an applicable analytical process for food safety and quality.
Collapse
Affiliation(s)
- Alev Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Mehmet Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | | | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey.
| |
Collapse
|
7
|
Georgiev NI, Krasteva PV, Bakov VV, Bojinov VB. A Highly Water-Soluble and Solid State Emissive 1,8-Naphthalimide as a Fluorescent PET Probe for Determination of pHs, Acid/Base Vapors, and Water Content in Organic Solvents. Molecules 2022; 27:molecules27134229. [PMID: 35807479 PMCID: PMC9268048 DOI: 10.3390/molecules27134229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
A new highly water-soluble 1,8-naphthalimide fluorophore designed on the “fluorophore-spacer-receptor1-receptor2” model has been synthesized. Due to the unusually high solubility in water, the novel compound proved to be a selective PET-based probe for the determination of pHs in aqueous solutions and rapid detection of water content in organic solvents. Based on the pH dependence of the probe and its high water solubility, the INH logic gate was achieved using NaOH and water as chemical inputs, where NaOH is the disabler and the water is an enabler. In addition, the probe showed effective fluorescence “off-on” reversibility on glass support after exposure to acid and base vapors, which defines it as a promising platform for rapid detection of acid/base vapors in the solid-state, thus extending the molecular sensing concept from solution to the solid support.
Collapse
Affiliation(s)
- Nikolai I. Georgiev
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| | | | | | - Vladimir B. Bojinov
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| |
Collapse
|
8
|
Yuan Y, Yu L, Liu Q, Ma X, Zhang S, Sun M, Wang S. Multi-dentate chelation induces fluorescence enhancement of pyrene moiety for highly selective detection of Fe(III). ANAL SCI 2022; 38:1095-1103. [PMID: 35731470 DOI: 10.1007/s44211-022-00138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Fluorescence enhancement has great advantages and various promising applications for a fluorescent molecular probe, which shows high sensitivity and high selectivity. In this report, a novel pyrene-based fluorescent probe with multidentate ligand (PPD) was synthesized for highly selective detection of Fe(III), which exhibited great fluorescence enhancement response upon the addition of Fe(III) in aqueous solution of pH 3.5 ~ 7.5, with a detection limit of 115 nM. The probe also has good water solubility and photostability. Further fluorescence titration confirmed 1:1 stoichiometric ratio for the probe PPD-Fe(III), which can be applied for quantification of Fe(III). The probe was validated for ferric detection in real water samples by spike and recovery test.
Collapse
Affiliation(s)
- Yaru Yuan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.,MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Long Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.,MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Qihua Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xiangyun Ma
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.,MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Songlin Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.,MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Mingtai Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Suhua Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China. .,MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
9
|
Jain N, Kaur N. A comprehensive compendium of literature of 1,8-Naphthalimide based chemosensors from 2017 to 2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis. Top Curr Chem (Cham) 2021; 379:10. [DOI: 10.1007/s41061-020-00323-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
|
11
|
A hydrophilic polymer-based bifunctional nanosensor for sequential fluorescence sensing of Cu2+ and biothiols and constructing molecular logic gate. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Dare EO, Vendrell‐Criado V, Consuelo Jiménez M, Pérez‐Ruiz R, Díaz Díaz D. Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection. Chemistry 2020; 26:13142-13146. [PMID: 32460420 PMCID: PMC7692944 DOI: 10.1002/chem.202001908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/22/2020] [Indexed: 11/10/2022]
Abstract
The recent demand for fluorescent-labeled materials (FLMs) in forensic security concepts such as latent fingerprints (LFs) that encode information for anti-counterfeiting and encryption of confidential data makes necessary the development of building new and innovative materials. Here, novel FLMs based on polyhedral oligomeric silsesquioxanes (POSS) functionalized with fluorophores via "click" reactions have been successfully synthesized and fully characterized. A comprehensive study of their photophysical properties has displayed large Stokes's shift together with good photostability in all cases, fulfilling the fundamental requisites for any legible LF detection on various surfaces. The excellent performance of the hetero-bifunctional FLM in the visualization of LF is emphasized by their legibility, selectivity, sensitivity and temporal photostability. In this study, development mechanisms have been proposed and the overall concept constitute a novel approach for vis-à-vis forensic investigations to trace an individual's identity.
Collapse
Affiliation(s)
- Enock O. Dare
- Institute of Organic ChemistryUniversity of RegensburgUniversitaetsstr. 3193040RegensburgGermany
- Department of ChemistryFederal University of AgricultureP.M. B2240AbeokutaNigeria
| | | | - M. Consuelo Jiménez
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera, s/n46022ValenciaSpain
| | - Raúl Pérez‐Ruiz
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera, s/n46022ValenciaSpain
| | - David Díaz Díaz
- Institute of Organic ChemistryUniversity of RegensburgUniversitaetsstr. 3193040RegensburgGermany
- Departamento de Química OrgánicaUniversidad de La LagunaAvda. Astrofísico Francisco Sánchez38206La LagunaTenerifeSpain
- Instituto Universitario de Bio-Orgánica Antonio GonzálezUniversidad de La LagunaAvda. Astrofísico Francisco Sánchez 238206La LagunaTenerifeSpain
| |
Collapse
|
13
|
Zhang J, Yang Z, Zhang S, Xie Z, Han S, Wang L, Zhang B, Sun S. Investigation of endogenous malondialdehyde through fluorescent probe MDA-6 during oxidative stress. Anal Chim Acta 2020; 1116:9-15. [DOI: 10.1016/j.aca.2020.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
14
|
Said AI, Georgiev NI, Bojinov VB. A smart chemosensor: Discriminative multidetection and various logic operations in aqueous solution at biological pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117304. [PMID: 31255861 DOI: 10.1016/j.saa.2019.117304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
A novel rhodamine-pyrazole based molecular probe was designed and easily synthesized. The probe could to detect several analytes in aqueous solution at biological pH (HEPES, pH = 7.2). Several heavy metal cations, including Cu2+, Fe3+, Al3+, Hg2+ and Ni2+ were detected discriminately by the probe. Also, the novel compound exhibited a good sensory selectivity towards S2O52- by both absorption and emission spectra. Moreover, probe/Cu2+ complex could to detect several anions, including F-, CN-, S2-, CH3COO-, CO32- and NO2-. Furthermore, the probe exhibited a high potential to work as a molecular system able to perform a number of logical operations such as AND, NAND, NOR and INHIBIT logic gates.
Collapse
Affiliation(s)
- Awad I Said
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria; Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nikolai I Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Vladimir B Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria.
| |
Collapse
|
15
|
Ye F, Wu N, Li P, Liu YL, Li SJ, Fu Y. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe 3+, Al 3+ and Cr 3+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117242. [PMID: 31207489 DOI: 10.1016/j.saa.2019.117242] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
An effective morpholine-type naphthalimide chemsensor, N-p-chlorophenyl-4-(2-aminoethyl)morpholine-1,8-naphthalimide (CMN) has been developed as a lysosome-targeted fluorometric sensor for trivalent metal ions (Fe3+, Al3+ and Cr3+). Upon the addition of Fe3+, Al3+ or Cr3+ ions, the probe CMN showed an evident naked-eye color changes which pale yellow solution of CMN turned deepened and it displayed turn-on fluorescence response in methanol. CMN showed a significant selective and sensitive toward Fe3+, Al3+ or Cr3+ ions, while there was no obvious behavior to other monovalent or divalent metal ions from the UV-vis and fluorescence spectrum. Based on the Job's plot analyses the 1:1 coordination mode of CMN with Fe3+, Al3+ or Cr3+ was proposed. The limit of detection (LOD) observed were 0.65, 0.69 and 0.68 μM for Fe3+, Al3+ and Cr3+ ions, respectively. The N-atom of morpholine directly involved in complex formation, CMN emitted fluorescence through inhibition of photoinduced electron transfer (PET). This probe exhibited excellent imaging ability for Fe3+, Al3+and Cr3+ ions in living cells with low cytotoxicity. Significantly, the cellular confocal microscopic research indicated that the lysosome-targeted group of morpholine moiety was introduced which realized the capability of imaging lysosomal trivalent metal ions in living cells for the first time.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Wu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Jie Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Kang SY, Yin H, Zhang KQ, Chen X, Wang KZ. Chemosensing properties and logic gate behaviors of graphene quantum dot-appended terpyridine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:657-668. [PMID: 30889739 DOI: 10.1016/j.msec.2019.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Graphene quantum dot-covalently appended terpyridine, GQDs-tpy, was synthesized and characterized by X-ray photoelectron spectroscopy, FTIR spectroscopy and transmission electron microscopy. GQDs-tpy was found to act as multifunctional chemosensors: a highly selective colorimetric chemosensor for Fe2+ as evidenced by an obvious color change from colorless to pink, and a typical fluorescence enhanced probe for Zn2+ over 13 metal cations even in practical water samples. Moreover, two-input XOR, INHIBIT and IMPICATION logic gates as well as four-input OR and NOR logic gates were constructed according to the characteristic responses of GQDs-tpy to a sequence of cations.
Collapse
Affiliation(s)
- Si-Yuan Kang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong Yin
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kai-Qi Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaobo Chen
- Applied Optics Beijing Area Major Laboratory and Physics Department, Beijing Normal University, Beijing 100875, China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
17
|
The simplest molecular chemosensor for detecting higher pHs, Cu2+ and S2- in aqueous environment and executing various logic gates. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Anand T, Ashok Kumar SK, Sahoo SK. A new Al 3+ selective fluorescent turn-on sensor based on hydrazide-naphthalic anhydride conjugate and its application in live cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:105-112. [PMID: 29909216 DOI: 10.1016/j.saa.2018.06.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
In this communication, we have developed an optical chemosensor 2-amino N-(6-bromo-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzamide (NAPH) for selective detection of Al3+ by reacting 4-bromo-1,8-naphthalic anhydride with 2-aminobenzohydrazide. In (DMSO:H2O, 1:1, v/v) medium, the selective and specific nature of NAPH towards Al3+ was observed by the quenching along with a blue-shift in the absorption of NAPH at 465 nm that resulted in the distinct colour change from light brown to colourless. The selective complexation that occurred between NAPH and Al3+ was investigated by 1H NMR and DFT methods. Under similar conditions, the weakly fluorescent receptor NAPH showed a distinct fluorescence enhancement at 555 nm in the presence of Al3+ among the other tested metal ions and anions. The NAPH·Al3+ complex formation is reversible upon addition of strong chelating agent EDTA. The receptor NAPH can be applied to detect Al3+ down to 2.9 μM without any interference from other tested metal ions. In addition, the receptor NAPH was successfully applied to detect Al3+ in live HeLa cells.
Collapse
Affiliation(s)
- Thangaraj Anand
- Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Surat 395007, India
| | - S K Ashok Kumar
- Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Surat 395007, India.
| |
Collapse
|
19
|
Huang J, Chen Y, Qi J, Zhou X, Niu L, Yan Z, Wang J, Zhao G. A dual-selective fluorescent probe for discriminating glutathione and homocysteine simultaneously. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:105-111. [PMID: 29738890 DOI: 10.1016/j.saa.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Homocysteine (Hcy) and glutathione (GSH) play important roles in a variety of physiological and pathological processes. Abnormal levels of Hcy and GSH are related to various diseases. Fluorescent probes for detecting them with sensitive and selective are highly desirable. However, efficient discrimination of Hcy and GSH is still a challenge for their similar molecular structures and chemical properties. Herein, we report a naphthalimide and sulfonyl benzoxadiazole (SBD) based dual-selective fluorescent probe for Hcy and GSH over other amino acids. The probe exhibited weak fluorescence (Φ = 0.075, in DMSO) at 490 nm and fluorescence enhancement upon addition of GSH (1-20 μM) with a detection limit of 0.8 μM. The probe also exhibited ratiometric fluorescence responses for Hcy (fluorescence at 490 nm decreased and fluorescence at 552 nm increased). The fluorescence intensity ratio (I552/I490) showed a good linear correlation with the Hcy concentrations in range of 3-20 μM and the detection limit was 0.1 μM. Moreover, this probe was successfully utilized for monitoring Hcy and GSH in living cells.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Yanan Chen
- Institute of Behavior and Psychology, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China.
| | - Xiaomin Zhou
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Zhijie Yan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China.
| | - Guoxiang Zhao
- Institute of Behavior and Psychology, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| |
Collapse
|
20
|
Said AI, Georgiev NI, Bojinov VB. Synthesis of a single 1,8-naphthalimide fluorophore as a molecular logic lab for simultaneously detecting of Fe 3+, Hg 2+ and Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:76-82. [PMID: 29433042 DOI: 10.1016/j.saa.2018.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/13/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
A novel fluorescence sensing 1,8-naphthalimide fluorophore is synthesized and investigated. The novel probe comprising two different binding moieties is capable to detect selectively Fe3+ over the other representative metal ions as well as a combination of biologically important cations such as Fe3+, Cu2+ and Hg2+ in the physiological range without an interfering effect of the pHs. Due to the remarkable fluorescence changes in the presence of Fe3+, Hg2+ and Cu2+ ions, INH and AND logic gates are executed and the system is able to act as a single output combinatorial logic circuit with three chemical inputs.
Collapse
Affiliation(s)
- Awad I Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nikolai I Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Vladimir B Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria.
| |
Collapse
|
21
|
Synthesis and Fluorescent Property Study of Novel 1,8-Naphthalimide-Based Chemosensors. Molecules 2018; 23:molecules23020376. [PMID: 29439399 PMCID: PMC6017435 DOI: 10.3390/molecules23020376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
A series of novel mono- and di-substituted N-n-butyl-1,8-naphthalimide derivatives were synthesized simultaneously via a three-step reaction. The single crystal structure of N-n-butyl-4-[N',N'-bis(2',4'-dichlorobenzoyl)ethylamino]-1,8-naphthalimide (3f) was determined. The UV-vis and fluorescence properties of compound 3f were investigated. The 3f showed highly selective and sensitive fluorescence changes response towards Pb2+. A titration of monomer with Pb2+ ion was performed. When Pb2+ ion concentration increased from 0 to 10 eq., the fluorescent intensity of 3f decreased from 199.97 to 48.21. The pH effect on 3f showed that it is stable in a wide range of pH. The results indicated that 3f might be a probe molecule for Pb2+.
Collapse
|
22
|
Chen Y, Qi J, Huang J, Zhou X, Niu L, Yan Z, Wang J. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:634-641. [PMID: 28892782 DOI: 10.1016/j.saa.2017.08.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.
Collapse
Affiliation(s)
- Yanan Chen
- Institute of Behavior and Psychology, Henan University Jinming Campus, Kaifeng 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, Henan, China.
| | - Jing Huang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, Henan, China
| | - Xiaomin Zhou
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, Henan, China
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, Henan, China
| | - Zhijie Yan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, Henan, China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jinming Campus, Kaifeng 475004, Henan, China.
| |
Collapse
|
23
|
McLaughlin B, Surender EM, Wright GD, Daly B, de Silva AP. Lighting-up protein–ligand interactions with fluorescent PET (photoinduced electron transfer) sensor designs. Chem Commun (Camb) 2018; 54:1319-1322. [DOI: 10.1039/c7cc05929a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extending the versatile fluorescent PET sensing/switching system causes ‘off–on’ signalling when a ligand binds to its appropriate protein.
Collapse
Affiliation(s)
- Bernard McLaughlin
- School of Chemistry and Chemical Engineering
- Queen's University
- Belfast BT9 5AG
- UK
| | - Esther M. Surender
- School of Chemistry and Chemical Engineering
- Queen's University
- Belfast BT9 5AG
- UK
| | - Glenn D. Wright
- School of Chemistry and Chemical Engineering
- Queen's University
- Belfast BT9 5AG
- UK
| | - Brian Daly
- School of Chemistry and Chemical Engineering
- Queen's University
- Belfast BT9 5AG
- UK
| | | |
Collapse
|