1
|
Apaydın BB, Çamoğlu T, Canbek Özdil ZC, Gezen‐Ak D, Ege D, Gülsoy M. Chitosan-enhanced sensitivity of mercaptoundecanoic acid (MUA)- capped gold nanorod based localized surface plasmon resonance (LSPR) biosensor for detection of alpha-synuclein oligomer biomarker in parkinson's disease. Biotechnol Appl Biochem 2025; 72:150-163. [PMID: 39228174 PMCID: PMC11798540 DOI: 10.1002/bab.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Alpha-synuclein oligomers play a crucial role in the early diagnosis of Parkinson's disease (PD). In this study, a mercaptoundecanoic acid (MUA)-capped gold nanorod (GNR)-coated and chitosan (CH)-immobilized fiber optic probe has shown considerable sensitivity of its detection. The proposed U-shaped fiber optic biosensor based on localized surface plasmon resonance (LSPR) was applied to detect α-syn oligomer (OA) biomarker. By analyzing OA concentrations, the biosensor achieved a limit of detection of (LOD) 11 pM within the concentration range of 10-100 pM and the sensitivity value was found as 502.69 Δλ/RIU. Upon analysis of the CV% (coefficient of variation) and accuracy/recovery values, it is revealed that the sensor successfully fulfilled the criteria for success, displaying accuracy/recovery values within the range of 80%-120% and CV% values below 20%. This sensor presents significant advantages, including high sensitivity, specificity, and ability to detect very low concentrations of OA. In conclusion, the suggested U-shaped fiber optic biosensor has the potential to be valuable in the early detection of PD from a clinical perspective.
Collapse
Affiliation(s)
| | - Tugay Çamoğlu
- Department of Neuroscience, Institute of Neurological SciencesIstanbul University‐CerrahpaşaIstanbulTurkey
| | | | - Duygu Gezen‐Ak
- Department of Neuroscience, Institute of Neurological SciencesIstanbul University‐CerrahpaşaIstanbulTurkey
| | - Duygu Ege
- Institute of Biomedical EngineeringBoğaziçi UniversityIstanbulTurkey
| | - Murat Gülsoy
- Institute of Biomedical EngineeringBoğaziçi UniversityIstanbulTurkey
| |
Collapse
|
2
|
Zhou J, Gao W, Wu J, Xiang Z, Zeng J, Wang B, Xu J. Fabrication of high performance 2D flexible SERS substrate based on cellulose nanofibrils and its application for pesticide residue detection. Int J Biol Macromol 2024; 282:137115. [PMID: 39500433 DOI: 10.1016/j.ijbiomac.2024.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Cellulose nanofibrils (CNFs) can serve as an efficient surface enhanced Raman scattering (SERS) platform for in situ detection of trace targets. In this study, a highly reproducible SERS platform based on TEMPO-oxidized CNFs (T-CNFs) was fabricated by the ion-exchange. Self-assembly of silver nanoparticles (AgNPs) was accomplished in only 120 s. The abundant carboxylate groups and good hydrophilicity of T-CNFs facilitated uniform and dense loading of AgNPs over the surface area. The obtained SERS substrate greatly enhanced the Raman signal of different pesticides, and the detection limits of thiram and thiabendazole were 5.81 × 10-8 M and 9.63 × 10-8 M, respectively. SERS substrate could produce homogeneous Raman-enhanced signals (relative standard deviation (RSD) = 6.59 %). In addition, due to the good flexibility, SERS substrate could collect and detect pesticide residues from the surface of apples. The intensities of Raman characteristic peak at 1384 cm-1 showed a good linear relationship with the analyte concentrations (0.96 ng/cm2-9600 ng/cm2). The constructed SERS substrate provided a theoretical basis for the preliminary rapid screening of hazardous chemical residues in food, which was of great value for the SERS technique to become a routine on-site analysis method for pesticide residues.
Collapse
Affiliation(s)
- Junjie Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinglin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Krivitsky V, Krivitsky A, Mantella V, Ben-Yehuda Greenwald M, Sankar DS, Betschmann J, Bader J, Zoratto N, Schreier K, Feiss S, Walker D, Dengjel J, Werner S, Leroux JC. Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212000. [PMID: 37452635 DOI: 10.1002/adma.202212000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.
Collapse
Affiliation(s)
- Vadim Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Adva Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Valeria Mantella
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | | | - Jil Betschmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Kento Schreier
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Sarah Feiss
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Dario Walker
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
4
|
Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010418. [PMID: 36615607 PMCID: PMC9824035 DOI: 10.3390/molecules28010418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The chemical immobilization of cobalt(II) ions in a silica aerogel matrix enabled the synthesis of the first representative example of aerogel-based single-ion magnets. For the synthesis of the lyogels, methyl-trimethoxysilane and N-3-(trimethoxysilyl)propyl ethylenediamine were co-hydrolyzed, then the ethylenediamine groups that were immobilized on the silica matrix enabled the subsequent binding of cobalt(II) ions. Lyogels with various amounts of ethylenediamine moieties (0.1-15 mol %) were soaked in isopropanol solutions of cobalt(II) nitrate and further supercritically dried in carbon dioxide to obtain aerogels with a specific surface area of 210-596 m2·g-1, an apparent density of 0.403-0.740 cm3·g-1 and a porosity of 60-78%. The actual cobalt content in the aerogels was 0.01-1.50 mmol per 1 g of SiO2, which could easily be tuned by the concentration of ethylenediamine moieties in the silica matrix. The introduction of cobalt(II) ions into the ethylenediamine-modified silica aerogel promoted the stability of the diamine moieties at the supercritical drying stage. The molecular prototype of the immobilized cobalt(II) complex, bearing one ethylenediamine ligand [Co(en)(MeCN)(NO3)2], was synthesized and structurally characterized. Using magnetometry in the DC mode, it was shown that cobalt(II)-modified silica aerogels exhibited slow magnetic relaxation in a nonzero field. A decrease in cobalt(II) concentration in aerogels from 1.5 mmol to 0.14 mmol per 1 g of SiO2 resulted in a weakening of inter-ion interactions; the magnetization reversal energy barrier likewise increased from 4 to 18 K.
Collapse
|
5
|
Wu Y, Wang C, Wang C, Wang P, Chang X, Han L, Zhang Y. Multiple Biomarker Simultaneous Detection in Serum via a Nanomaterial-Functionalized Biosensor for Ovarian Tumor/Cancer Diagnosis. MICROMACHINES 2022; 13:mi13122046. [PMID: 36557345 PMCID: PMC9783278 DOI: 10.3390/mi13122046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/12/2023]
Abstract
Ovarian tumors/cancers are threatening women's health worldwide, which demands high-performance detection methods and accurate strategies to effectively detect, diagnose and treat them. Here, we report a nanographene oxide particle-functionalized microfluidic fluorescence biosensor to simultaneously detect four biomarkers, CA125, HE4, CEA and APF, for ovarian tumor/cancer diagnosis. The developed biosensor exhibits good selectivity and a large biomarker detection range with a limit of detection of 0.01 U/mL for CA125 and ~1 pg/mL for HE4, CEA and APF. The current results indicate that (1) the proposed biosensor is a promising tool for the simultaneous detection of multiple biomarkers in ovarian tumors/cancer and (2) CA125 and HE4 are strong indicators, AFP may be helpful, and CEA is a weak biomarker for ovarian tumor/cancer diagnosis. The proposed biosensor would be a potential tool, and an analytical approach for the simultaneous detection of multiple biomarkers will provide a new strategy for the early screening, diagnosis and treatment of ovarian tumors/cancers, as well as other cancers.
Collapse
Affiliation(s)
- Yu Wu
- Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
| | - Pan Wang
- Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Xiaohan Chang
- Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250100, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
6
|
Andre JS, Grant J, Greyson E, Chen X, Tucker C, Drumright R, Mohler C, Chen Z. Molecular Interactions between Amino Silane Adhesion Promoter and Acrylic Polymer Adhesive at Buried Silica Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6180-6190. [PMID: 35512318 DOI: 10.1021/acs.langmuir.2c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the influence of an amino silane (3-(2-aminoethylamino)-propyldimethoxymethylsilane, AEAPS) on the interfacial structure and adhesion of butyl acrylate/methyl methacrylate copolymers (BAMMAs) to silica was investigated by sum frequency generation vibrational spectroscopy (SFG). Small amounts of methacrylic acid, MAA, were included in the BAMMA polymerizations to assess the impact of carboxylic acid functionality on the glass interface. SFG was used to probe the O-H and C═O groups of incorporated MAA, ester C═O groups of BAMMA, and CH groups from all species at the silica interfaces. The addition of AEAPS resulted in a significant change in the molecular structure of the polymer at the buried interface with silica due to specific interactions between the BAMMA polymers and silane. SFG results were consistent with the formation of ionic bonds between the primary and secondary amines of the AEAPS tail group and the MAA component of the polymer, as evidenced by the loss of the MAA O-H and C═O signals at the interface. It is extensively reported in the literature that methoxy head groups of an amino silane chemically bind to the silanols of glass, leaving the amine groups available to react with various chemical functionalities. Our results are consistent with this scenario and support an adhesion promotion mechanism of amino silane with various aspects: (1) the ionic bond formation between the tail amine group and acid functionality on BAMMA, (2) the chemical coupling between the silane head group and glass, (3) migration of more ester C═O groups to the interface with order, and (4) disordering or reduced levels of CH groups at the interface. These results are important for better understanding of the mechanisms and effect of amino silanes on the adhesion between acrylate polymers and glass substrates in a variety of applications.
Collapse
Affiliation(s)
- John S Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph Grant
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Eric Greyson
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Xiaoyun Chen
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Christopher Tucker
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Ray Drumright
- Dow Coating Materials, Midland, Michigan 48674, United States
| | - Carol Mohler
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Biosynthesis of Rutin Trihydrate Loaded Silica Nanoparticles and Investigation of Its Antioxidant, Antidiabetic and Cytotoxic Potentials. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02269-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Robles-Jimarez HR, Sanjuan-Navarro L, Jornet-Martínez N, Primaz CT, Teruel-Juanes R, Molins-Legua C, Ribes-Greus A, Campíns-Falcó P. New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up possibilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150317. [PMID: 34818774 DOI: 10.1016/j.scitotenv.2021.150317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
This paper shows a particular example to move to a sustainable circular economical process from valorization of rice straw ashes by developing a green synthesis for obtaining a useful sub-product. This strategy can palliate negative effects of the agriculture waste practices on the environment and also the obtained silica reduced nitrate content in waters. It is demonstrated that the silica synthesis developed at lab was scalable more than a hundred times with good results. Adsorption studies of nitrate in standards and real well waters at lab scale and scaling-up provided similar results. Adsorption values near to 15 mg/g for nitrate standards and 8.5 mg/g for well water were obtained until achieving the initial nitrate concentration. Experimental breakthrough curves fitted to Thomas model, which gave similar results for adsorption capacities. The adsorption capacity was checked with that obtained by a commercial resin, providing improved results. The method at large scale was compared with industrial traditional methods and green adsorbents.
Collapse
Affiliation(s)
- H R Robles-Jimarez
- MINTOTA Research Group, Departamento de Química Analítica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - L Sanjuan-Navarro
- MINTOTA Research Group, Departamento de Química Analítica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - N Jornet-Martínez
- MINTOTA Research Group, Departamento de Química Analítica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - C T Primaz
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, 46022, Valencia, Spain
| | - R Teruel-Juanes
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, 46022, Valencia, Spain
| | - C Molins-Legua
- MINTOTA Research Group, Departamento de Química Analítica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - A Ribes-Greus
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, 46022, Valencia, Spain
| | - P Campíns-Falcó
- MINTOTA Research Group, Departamento de Química Analítica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
9
|
Chen Q, Qin L, Shi C, Kang SZ, Li X. A stable and plug-and-play aluminium/titanium dioxide/metal-organic framework/silver composite sheet for sensitive Raman detection and photocatalytic removal of 4-aminothiophenol. CHEMOSPHERE 2021; 282:131000. [PMID: 34111640 DOI: 10.1016/j.chemosphere.2021.131000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The sensitive detection and rapid removal of 4-aminothiophenol (4-ATP, a poisonous pesticide) demand special design to potential substrates. Herein, a metal-organic framework (ZIF-8) and Ag nanoparticles were fabricated one by one on the TiO2 coated Al sheet, and thus the Al-TiO2-ZIF-8-Ag sheet with sandwich structure was successfully synthesized. The cost-effective Al-TiO2-ZIF-8-Ag sheet (3.7 wt% Ag) possessed a low detection concentration of 1 × 10-9 M towards 4-ATP, and surface-enhanced Raman scattering (SERS) analytical enhanced factor (AEF) of the Al-TiO2-ZIF-8-Ag was 2.6 × 106, which was higher than other similar substrates. Furthermore, 4-ATP can be selectively and repeatedly detected on the Al-TiO2-ZIF-8-Ag even through it was in real samples. It indicated that the Al-TiO2-ZIF-8-Ag was a very active and stable SERS materials for the monitoring of 4-ATP. Importantly, the substrate exhibited faster and more efficient photocatalytic activity for 4-ATP degradation. The SERS and photocatalytic mechanisms of 4-ATP on the Al-TiO2-ZIF-8-Ag substrate were proposed. The cost-effective Al-TiO2-ZIF-8-Ag sheet with double function is plug-and-play, and could be used in the detection and treatment of pollutants in wastewater.
Collapse
Affiliation(s)
- Qian Chen
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Changli Shi
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
10
|
Mohsin AZ, Sukor R, Mustapha-Kamil Y, Shatar L, Selamat J, Meor-Hussin AS, Ismail IH, Mahdi MA. Sensitive Detection of Goat α s1-Casein Using Tapered Optical Fiber Sensor. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2021; 27:1-7. [DOI: 10.1109/jstqe.2020.3045131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
|
11
|
Nyga A, Czerwińska-Główka D, Krzywiecki M, Przystaś W, Zabłocka-Godlewska E, Student S, Kwoka M, Data P, Blacha-Grzechnik A. Covalent Immobilization of Organic Photosensitizers on the Glass Surface: Toward the Formation of the Light-Activated Antimicrobial Nanocoating. MATERIALS 2021; 14:ma14113093. [PMID: 34200077 PMCID: PMC8201308 DOI: 10.3390/ma14113093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
Two highly efficient commercial organic photosensitizers—azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin (APTPP)—were covalently attached to the glass surface to form a photoactive monolayer. The proposed straightforward strategy consists of three steps, i.e., the initial chemical grafting of 3-aminopropyltriethoxysilane (APTES) followed by two chemical postmodification steps. The chemical structure of the resulting mixed monolayer (MIX_TC_APTES@glass) was widely characterized by X-ray photoelectron (XPS) and Raman spectroscopies, while its photoactive properties were investigated in situ by UV–Vis spectroscopy with α-terpinene as a chemical trap. It was shown that both photosensitizers retain their activity toward light-activated generation of reactive oxygen species (ROS) after immobilization on the glassy surface and that the resulting nanolayer shows high stability. Thanks to the complementarity of the spectral properties of AA and APTPP, the effectiveness of the ROS photogeneration under broadband illumination can be optimized. The reported light-activated nanocoating demonstrated promising antimicrobial activity toward Escherichia coli (E. coli), by reducing the number of adhered bacteria compared to the unmodified glass surface.
Collapse
Affiliation(s)
- Aleksandra Nyga
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
| | - Dominika Czerwińska-Główka
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
| | - Maciej Krzywiecki
- Center for Science and Education (CSE), Institute of Physics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
| | - Wioletta Przystaś
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (W.P.); (E.Z.-G.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Ewa Zabłocka-Godlewska
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (W.P.); (E.Z.-G.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Monika Kwoka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
- Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Przemysław Data
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
- Correspondence: ; Tel.: +48-322371024
| |
Collapse
|
12
|
Shin H, Oh S, Kang D, Choi Y. Protein Quantification and Imaging by Surface-Enhanced Raman Spectroscopy and Similarity Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903638. [PMID: 32537409 PMCID: PMC7284192 DOI: 10.1002/advs.201903638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Protein quantification techniques such as immunoassays have been improved considerably, but they have several limitations, including time-consuming procedures, low sensitivity, and extrinsic detection. Because direct surface-enhanced Raman spectroscopy (SERS) can detect intrinsic signals of proteins, it can be used as an effective detection method. However, owing to the complexity and reliability of SERS signals, SERS is rarely adopted for quantification without a purified target protein. This study reports an efficient and effective direct SERS-based immunoassay (SERSIA) technique for protein quantification and imaging. SERSIA relies on the uniform coating of gold nanoparticles (GNPs) on a target-protein-immobilized substrate by simple centrifugation. As centrifugation induces close contact between the GNPs and target proteins, the intrinsic signals of the target protein can be detected. For quantification, the protein levels in a cell lysate are estimated using similarity analysis between antibody-only and protein-conjugated samples. This method reliably estimates the protein level at a sub-picomolar detection limit. Furthermore, this method enables quantitative imaging of immobilized protein at a micrometer range. Because this technique is fast, sensitive, and requires only one type of antibody, this approach can be a useful method to detect proteins in biological samples.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio‐convergence EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seunghyun Oh
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Daehyeon Kang
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yeonho Choi
- Department of Bio‐convergence EngineeringKorea UniversitySeoul02841Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
- Department of BioengineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
13
|
Wang Z, Zheng C, Zhang P, Huang Z, Zhu C, Wang X, Hu X, Yan J. A split-type structure of Ag nanoparticles and Al 2O 3@Ag@Si nanocone arrays: an ingenious strategy for SERS-based detection. NANOSCALE 2020; 12:4359-4365. [PMID: 31912857 DOI: 10.1039/c9nr09238b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we report a facile strategy of combined SERS measurements based on a split-type SERS substrate, which exhibits excellent SERS activity, detection signal reproducibility and chemical stability. The SERS substrate consists of an ordered Al2O3@Ag@Si nanocone array and Ag nanoparticles (Ag-NPs), both of which are fabricated individually. The Al2O3@Ag@Si nanocone array is obtained by ion-sputtering Ag on an Si nanocone array and then coating an ultrathin (∼2 nm) Al2O3 dielectric layer via atomic layer deposition (ALD). Ag-NPs are synthesized via the liquid phase method and then immersed in an organic solvent for liquid seal. For the SERS measurement, Ag-NPs are dispersed in a liquid containing the probe molecules and then, they self-assemble on the surface of the Al2O3@Ag@Si nanocones. Subsequently, the ultrathin Al2O3 dielectric layer separates Ag-NPs from the Ag@Si nanocones, forming massive gap-introduced hot spots. This substrate is sensitive to 1 pM Rhodamine R6G with an average enhancement factor of up to 109, exhibiting excellent SERS activity. Moreover, due to the protection of the Al2O3 dielectric layer and the organic solvent for the Ag@Si nanocones and Ag-NPs against oxidation, the split-type SERS substrate achieves an SERS signal with almost no attenuation after five months, indicating its good chemical stability.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China. and Anhui University, Hefei, 230039, China
| | - Chunxue Zheng
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Peng Zhang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Zhulin Huang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Chuhong Zhu
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiujuan Wang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiaoye Hu
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Jian Yan
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
14
|
Sánchez-Téllez D, Rodríguez-Lorenzo L, Téllez-Jurado L. Siloxane-inorganic chemical crosslinking of hyaluronic acid – based hybrid hydrogels: Structural characterization. Carbohydr Polym 2020; 230:115590. [DOI: 10.1016/j.carbpol.2019.115590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
|
15
|
Kutenina AP, Zvyagina AI, Raitman OA, Enakieva YY, Kalinina MA. Layer-by-Layer Assembly of SAM-supported Porphyrin-based Metal Organic Frameworks for Molecular Recognition. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19040070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Xu K, Vickers ET, Rao L, Lindley SA, Allen AC, Luo B, Li X, Zhang JZ. Synergistic Surface Passivation of CH
3
NH
3
PbBr
3
Perovskite Quantum Dots with Phosphonic Acid and (3‐Aminopropyl)triethoxysilane. Chemistry 2019; 25:5014-5021. [DOI: 10.1002/chem.201805656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Ke Xu
- Department of Chemistry and BiochemistryUniversity of California, Santa Cruz Santa Cruz CA 95064 USA
- College of Chemistry and Chemical EngineeringChongqing University Chongqing 400030 P.R. China
| | - Evan T. Vickers
- Department of Chemistry and BiochemistryUniversity of California, Santa Cruz Santa Cruz CA 95064 USA
| | - Longshi Rao
- School of Mechanical and Automotive EngineeringSouth China University of Technology Guangdong 510640 P.R. China
| | - Sarah A. Lindley
- Department of Chemistry and BiochemistryUniversity of California, Santa Cruz Santa Cruz CA 95064 USA
| | - A'Lester C. Allen
- Department of Chemistry and BiochemistryUniversity of California, Santa Cruz Santa Cruz CA 95064 USA
| | - Binbin Luo
- Department of ChemistryShantou University Guangdong 515063 P.R. China
| | - Xueming Li
- College of Chemistry and Chemical EngineeringChongqing University Chongqing 400030 P.R. China
| | - Jin Zhong Zhang
- Department of Chemistry and BiochemistryUniversity of California, Santa Cruz Santa Cruz CA 95064 USA
| |
Collapse
|
17
|
Chen WJ, Liu XQ, Zhang S, Jiang H. Preparation of Gap-Controlled Monodispersed Ag Nanoparticles by Amino Groups Grafted on Silica Microspheres as a SERS Substrate for the Detection of Low Concentrations of Organic Compounds. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Jing Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Qing Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shun Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|