1
|
Elastic Properties of Taurine Single Crystals Studied by Brillouin Spectroscopy. Int J Mol Sci 2021; 22:ijms22137116. [PMID: 34281169 PMCID: PMC8267836 DOI: 10.3390/ijms22137116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
The inelastic interaction between the incident photons and acoustic phonons in the taurine single crystal was investigated by using Brillouin spectroscopy. Three acoustic phonons propagating along the crystallographic b-axis were investigated over a temperature range of −185 to 175 °C. The temperature dependences of the sound velocity, the acoustic absorption coefficient, and the elastic constants were determined for the first time. The elastic behaviors could be explained based on normal lattice anharmonicity. No evidence for the structural phase transition was observed, consistent with previous structural studies. The birefringence in the ac-plane indirectly estimated from the split longitudinal acoustic modes was consistent with one theoretical calculation by using the extrapolation of the measured dielectric functions in the infrared range.
Collapse
|
2
|
Kludský M, Dendisová M, Hrdlička Z, Jeništová A, Hovorka Š, Vopička O. Nafion modified with simple bases and amino acid derivatives: Survey of physical properties and search for effective pervaporation membranes. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Miroslav Kludský
- Department of Physical Chemistry University of Chemistry and Technology, Prague Prague Czechia
| | - Marcela Dendisová
- Department of Physical Chemistry University of Chemistry and Technology, Prague Prague Czechia
| | - Zdeněk Hrdlička
- Department of Polymers University of Chemistry and Technology, Prague Prague Czechia
| | - Adéla Jeništová
- Department of Physical Chemistry University of Chemistry and Technology, Prague Prague Czechia
| | - Štěpán Hovorka
- Department of Physical Chemistry University of Chemistry and Technology, Prague Prague Czechia
| | - Ondřej Vopička
- Department of Physical Chemistry University of Chemistry and Technology, Prague Prague Czechia
| |
Collapse
|
3
|
Kumar A, Das N, Satija NK, Mandrah K, Roy SK, Rayavarapu RG. A Novel Approach towards Synthesis and Characterization of Non-Cytotoxic Gold Nanoparticles Using Taurine as Capping Agent. NANOMATERIALS 2019; 10:nano10010045. [PMID: 31878144 PMCID: PMC7023053 DOI: 10.3390/nano10010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
Metal gold nanoparticles are of great interest due to their unique physico-chemical properties and their potential to be used as nano-probes in biosensors, drug delivery, and therapeutic applications. Currently, many capping agents are used for metal gold nanoparticles, such as cetyltrimethylammonium bromide (CTAB) and tri-sodium citrate that have been reported to be toxic and hinders biological applications. To address this issue, we report, for the first time, the use of taurine as a stable non-cytotoxic capping agent for synthesizing gold nanoparticles by using an in situ wet-chemical method. This facile method resulted in monodisperse gold nanospheres with a high yield and stability. Monodisperse gold nanospheres with average diameters of 6.9 nm and 46 nm were synthesized at a high yield with controlled morphology. Temperature played a critical role in determining the size of the taurine-capped gold nanoparticles. The subtle changes in the reaction parameters had a tremendous effect on the final size of nanoparticles and their stability. The synthesized nanoparticles were characterized by using optical spectroscopy, a ZetaSizer, a NanoSight, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), X-ray Photon Spectroscopy (XPS) and Electron Microscopy to understand their physico-chemical properties. Taurine was explored as a capping and stabilizing agent for gold nanospheres, which were evaluated for their toxicity responses towards human liver carcinoma cells (HepG2) via MTT assay.
Collapse
Affiliation(s)
- Akash Kumar
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabojit Das
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
4
|
Jiao X, Meng Y, Wang K, Huang W, Li N, Liu TCY. Rapid Detection of Adulterants in Whey Protein Supplement by Raman Spectroscopy Combined with Multivariate Analysis. Molecules 2019; 24:E1889. [PMID: 31100965 PMCID: PMC6571825 DOI: 10.3390/molecules24101889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022] Open
Abstract
The growing demand for whey protein supplements has made them the target of adulteration with cheap substances. Therefore, Raman spectroscopy in tandem with chemometrics was proposed to simultaneously detect and quantify three common adulterants (creatine, l-glutamine and taurine) in whey protein concentrate (WPC) powder. Soft independent modeling class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA) models were built based on two spectral regions (400-1800 cm-1 and 500-1100 cm-1) to classify different types of adulterated samples. The most effective was the SIMCA model in 500-1100 cm-1 with an accuracy of 96.9% and an error rate of 5%. Partial least squares regression (PLSR) models for each adulterant were developed using two different Raman spectral ranges (400-1800 cm-1 and selected specific region) and data pretreatment methods. The determination coefficients (R2) of all models were higher than 0.96. PLSR models based on typical Raman regions (500-1100 cm-1 for creatine and taurine, the combination of range 800-1000 cm-1 and 1300-1500 cm-1 for glutamine) were superior to models in the full spectrum. The lowest root mean squared error of prediction (RMSEP) was 0.21%, 0.33%, 0.42% for creatine, taurine and glutamine, and the corresponding limit of detection (LOD) values for them were 0.53%, 0.71% and 1.13%, respectively. This proves that Raman spectroscopy with the help of multivariate approaches is a powerful method to detect adulterants in WPC.
Collapse
Affiliation(s)
- Xianzhi Jiao
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Yaoyong Meng
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Kangkang Wang
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Wei Huang
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Nan Li
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangdong 510631, China.
| |
Collapse
|