1
|
Fu L, Dong P, Liu Z, Li Q, Guo Y. Unary Au Nanocrystal with Prestored Electrons and Intrinsic Low Hole-Injected Potential for Low-Triggering Potential Electrochemiluminescence. Anal Chem 2024; 96:18254-18261. [PMID: 39480793 DOI: 10.1021/acs.analchem.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Screening a novel electrochemiluminescence (ECL) system and lowering the ECL triggering potential are essential to ECL evolution. Herein, the near-infrared (NIR) ECL system with low-triggering potential ECL was constructed with weakly reductive tert-butylamine borane as coreactant and mercaptosuccinic acid/citrate (MSA/Cit)-capped Au (MSA/Cit@AuNCs) as luminophores. Toxic-element-free and dual-ligand MSA/Cit@AuNCs were prepared via ligand exchange and utilized as a model for developing unary metal NCs-based luminophores with more enhanced ECL performance than monoligand Au nanocrystals (AuNCs), which exhibited a two hole-injected process at around 0.48 and 0.80 V, respectively. Beneficial to the intrinsic low hole-injected potential of AuNCs, MSA/Cit@AuNCs exhibited similar low-triggering ECL potential at around 0.57 V with the participation of series coreactants or not, originating from the recombination of an internal prestored electron within the conduction band (CB) and electroinjected holes at around 0.25 V. Furthermore, the enhanced low-triggering potential around 0.57 V and NIR ECL around 835 nm of MSA/Cit@AuNCs was eventually obtained with the reductive tert-butylamine borane or N2H4·H2O containing a -C-N single-bond structure merely as coreactant. The low-triggering potential ECL of MSA/Cit@AuNCs/tert-butylamine borane system at 0.57 V can be harnessed to selectively determine a carcinoembryonic antigen (CEA) with one linear range spanning from 2 to 20000 fg/mL and a limit of detection of 0.33 fg/mL (S/N = 3). This study will contribute to a more comprehensive understanding of the ECL mechanism in terms of both regulating NCs and selecting coreactants.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Pengjie Dong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Zerui Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Qi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| |
Collapse
|
2
|
Song Q, Wang L, Zhang J, Liu Y, Zhang X, Kong X. Fabrication of Eu-MOFs rod-shaped nanospheres with dual emissions for ratiometric fluorescence detecting Hg 2+ in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124013. [PMID: 38394880 DOI: 10.1016/j.saa.2024.124013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The incorporation of novel nanostructure has been proven to significantly improve the performance of fluorescence-based sensors in terms of sensitivity, selectivity, and detection capability. Herein, a lanthanide metal-organic framework (BTC-Eu-BDC-NH2) with dual ligands of 2-aminobenzoic acid (BDC-NH2) and 1,3,5-benzene tricarboxylic acid (BTC) has been prepared for ratiometric fluorescent detection of Hg2+ through the rational one-step synthetic approach. Through adjusting the ratio of two ligands, this dual-ligands strategy not only provided two independent emissions at peaks of 435 nm and 615 nm to resist the influence of external conditions, but also introduced the visual detection with an obvious color change. Moreover, the specific rod-shaped nanospheres morphology substantially enlarged the surface area of BTC-Eu-BDC-NH2 to ensure good dispersion and rapid response during sensing. Upon the addition of Hg2+, the fluorescence at 435 nm of BTC-Eu-BDC-NH2 was obviously quenched because of the interaction between Hg2+ and -NH2 from the ligand, while the red fluorescence at 615 nm remains almost unchanged. As a result, the synthesized BTC-Eu-BDC-NH2 showed excellent performances for visual sensing detection of Hg2+ with a clear luminescent color conversion from blue to red, and the detecting range was 0-40 μM with a low detection limit of 67 nM. Finally, the developed sensor was applied to actual tap water, and a handy sensing kit was constructed by hydrogel with BTC-Eu-BDC-NH2, demonstrating its potential practical applications.
Collapse
Affiliation(s)
- Qiang Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China; Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Liang Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Jing Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Yan Liu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Xiaoyin Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China.
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China.
| |
Collapse
|
3
|
Gu Y, Jiao L, Cao F, Liu X, Zhou Y, Yang C, Gao Z, Zhang M, Lin P, Han Y, Dong D. A Real-Time Detection Method of Hg 2+ in Drinking Water via Portable Biosensor: Using a Smartphone as a Low-Cost Micro-Spectrometer to Read the Colorimetric Signals. BIOSENSORS 2022; 12:bios12111017. [PMID: 36421135 PMCID: PMC9688040 DOI: 10.3390/bios12111017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
This paper reported a real-time detection strategy for Hg2+ inspired by the visible spectrophotometer that used a smartphone as a low-cost micro-spectrometer. In combination with the smartphone's camera and optical accessories, the phone's built-in software can process the received light band image and then read out the spectral data in real time. The sensor was also used to detect gold nanoparticles with an LOD of 0.14 μM, which are widely used in colorimetric biosensors. Ultimately, a gold nanoparticles-glutathione (AuNPs-GSH) conjugate was used as a probe to detect Hg2+ in water with an LOD of 1.2 nM and was applied successfully to natural mineral water, pure water, tap water, and river water samples.
Collapse
Affiliation(s)
- Yifan Gu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Leizi Jiao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fengjing Cao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinchao Liu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
| | - Yunhai Zhou
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chongshan Yang
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhen Gao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mengjie Zhang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peng Lin
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuxing Han
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- RIOS Lab, Tsinghua University, Shenzhen 518055, China
| | - Daming Dong
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
4
|
Kailasa SK, Kateshiya MR, Malek NI. Introduction of cellulose-cysteine Schiff base as a new ligand for the fabrication of blue fluorescent gold nanoclusters for the detection of indapamide drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Mrad R, Poggi M, Ben Chaâbane R, Negrerie M. Role of surface defects in colloidal cadmium selenide (CdSe) nanocrystals in the specificity of fluorescence quenching by metal cations. J Colloid Interface Sci 2020; 571:368-377. [DOI: 10.1016/j.jcis.2020.03.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
|
6
|
Ma X, Wang Z, He S, Zhao J, Lai X, Xu J. L-Cysteine modified gold nanoparticles for tube-based fluorometric determination of mercury(II) ions. Mikrochim Acta 2019; 186:632. [PMID: 31422480 DOI: 10.1007/s00604-019-3734-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
A fluorescent probe is described for detection of mercury(II) ion by using L-cysteine-modified gold nanoparticles (Cys-AuNP). These were fabricated by a tube-based redox reaction where Cys acts as both the reducing reagent and capping ligand. The Cys-AuNP display red fluorescence, with excitation/emission peaks at 373/625 nm. Owing to the high-affinity of the Hg(II)-Au(I) interaction and the Hg(II)/carboxy or amino group interaction, the presence of Hg(II) cause selective quenching the fluorescence, while other metal ions do not give such an effect. Based on these findings, a method was designed for the determination of Hg(II) that has attractive figures of merit. These include a low limit of detection (1.3 nM), a wide detection range (from 2 nM to 30µM), and excellent specificity. The method was applied to Hg(II) screening in (spiked) tap and river water, and it gave satisfactory results. Graphical abstract Schematic representation of the application of L-cysteine modified gold nanoparticles (Cys-AuNP) for qualitative and quantitative detection of mercury(II) ions. Based on the interaction between Cys-AuNP and mercury(II) ion to quench the red fluorescence of Cys-AuNP, the target mercury(II) can in turn be determined by a fluorometric method.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Shan He
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Jingyi Zhao
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Xiaoqi Lai
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China.
| | - Jianguo Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
7
|
Mahajan PG, Dige NC, Vanjare BD, Eo SH, Seo SY, Kim SJ, Hong SK, Choi CS, Lee KH. A potential mediator for photodynamic therapy based on silver nanoparticles functionalized with porphyrin. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Pan X, Zuo G, Su T, Cheng S, Gu Y, Qi X, Dong W. Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|