1
|
Karagoz A, Savran T, Yilmaz I. A ″On-Off″ Fluorescent Sensor Based on Coumarin-Furoic Hydrazide for Recognition of Fe 3+: Drinking Water, Test Strip Applications and DFT Calculations. J Fluoresc 2025:10.1007/s10895-025-04212-2. [PMID: 40011367 DOI: 10.1007/s10895-025-04212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
A coumarin based fluorescent probe (E)-N'-((7-hydroxy-2-oxo-2H-chromon-3-yl)methylene)furan-2-carbohydrazide (CFHZ) was synthesized for the detection of Fe3+ and its characterizations were carried out using spectroscopic methods such as FT-IR, mass spectrometry1H-NMR, 13C-NMR. The novel probe CFHZ showed a highly selective and sensitive "turn-off" response to Fe3+ ion without any interference from other analytes. Strong fuorescence quenching phenomena of the CFHZ were observed in EtOH:H2O (99/1, v/v) detection system (λem = 470 nm) upon the additions of Fe3+. The binding stoichiometry between CFHZ and Fe3+ was determined by Job's method, FT-IR and MALDI TOF-MS and found to be 2:1. Also, the binding constant was determined to be 1.82 × 105 M-1 and the limits of detection for the analysis of Fe3+ was measured as 25.7 nM. Besides, experimental applications were carried out for real-time monitoring of Fe3+ in water samples using developed sensor. Additionally, fluorescence imaging experiments for Fe3+ detection of CFHZ probe on test papers were successfully performed.
Collapse
Affiliation(s)
- Abdurrahman Karagoz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye
| | - Tahir Savran
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye.
| | - Ibrahim Yilmaz
- Department of Mathematics and Science Education, Faculty of Education, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
- Innovative Food Technologies Development Application and Research Centre, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
| |
Collapse
|
2
|
Guliani E, Taneja A, Ranjan KR, Mishra V. Luminous Insights: Exploring Organic Fluorescent "Turn-On" Chemosensors for Metal-Ion (Cu +2, Al +3, Zn +2, Fe +3) Detection. J Fluoresc 2024; 34:1965-2001. [PMID: 37787885 DOI: 10.1007/s10895-023-03419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
There are several metal ions that are vital for the growth of the environmental field as well as for the biological field but only up to the maximum limit. If they are present in excess, it could be hazardous for the human health. With the growing technology, a series of various detection techniques are employed in order to recognize those metal ions, some of them include voltammetry, electrochemical methods, inductively couples, etc. However, these techniques are expensive, time consuming, requires large storage, advanced instrumentation, and a skilled person to operate. So, here comes the need of a sensor and it is defined as a miniature device which detects the substance of interest by giving response in the form of energy change. So, from past few decades, many sensors have been formulated for detecting metal ions with some basic characteristics like selectivity, specificity, sensitivity, high accuracy, lower detection limit, and response time. Detecting various metal ions by employing chemosensors involves different techniques such as fluorescence, phosphorescence, chemiluminescence, electrochemical, and colorimetry. The fluorescence technique has certain advantages over the other techniques. This review mainly focuses on the chemosensors that show a signal in the form of fluorescence to detect Al+3, Zn+2, Cu+2, and Fe+3 ions.
Collapse
Affiliation(s)
- Eksha Guliani
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, 201301, India
| | - Akanksha Taneja
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, 201301, India
| | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, 201301, India.
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
3
|
Sun X, Li J, He Q, Xue Y, Bai Y, Yang Y, Wang X, Wang S, Li R. Ferric ion detection mechanism of a dicarboxylic cellulose nanocrystal and a 7-amino-4-methylcoumarin based fluorescent chemosensor. RSC Adv 2022; 12:16798-16804. [PMID: 35754908 PMCID: PMC9170515 DOI: 10.1039/d2ra02303b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
As one of Earth's most widely distributed and abundant elements, iron impacts the natural environment and biological systems. Therefore, developing a simple, rapid, and accurate Fe3+ detection method is vital. Fluorescent dicarboxylic cellulose nanocrystals (FDCN) with selective quenching of Fe3+ were synthesized using 7-amino-4-methylcoumarin (AMC), and dicarboxylic cellulose nanocrystals (DCN) prepared by sequential periodate-chlorite oxidation. The sensing characteristics and detection mechanism of FDCN for Fe3+ were studied by fluorescence spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), the Stern-Volmer equation, Job's plot method, and the Benesi-Hildebrand equation. The results showed that FDCN was highly selective for Fe3+, and other metal ions did not reduce the selectivity. High sensitivity with a detection limit of 0.26 μM and a Stern-Volmer quenching constant of 0.1229 were also achieved. The coordination between Fe3+ and the carboxylic, hydroxyl, and amide groups on the surface of FDCN and the carbonyl of coumarin lactones to form FDCN/Fe3+ complexes prevented the intramolecular charge transfer (ICT) process and led to the fluorescence quenching of FDCN. EDTA restored the fluorescence emission of quenched FDCN. The complexation stoichiometry of Fe3+ to FDCN was 1 : 1, and the association constant was 3.23 × 104 M-1. The high hydrophilicity, sensitivity, and selectivity of FDCN for Fe3+ make the chemosensor suitable for Fe3+ trace detection in drinking water and biology.
Collapse
Affiliation(s)
- Xiaozheng Sun
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Jianye Li
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Qiang He
- College of Mechanical Engineering, Jiamusi University No. 258 Xuefu Street Jiamusi 154007 China
| | - Yanhua Xue
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Yu Bai
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Yuyao Yang
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Xiaogang Wang
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Sun Wang
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| | - Rui Li
- College of Engineering, Northeast Agricultural University No. 600 Changjiang Street Harbin 150030 China
| |
Collapse
|
4
|
Hussain S, Muhammad Junaid H, Tahir Waseem M, Rauf W, Jabbar Shaikh A, Anjum Shahzad S. Aggregation-Induced Emission of Quinoline Based Fluorescent and Colorimetric Sensors for Rapid Detection of Fe 3+ and 4-Nitrophenol in Aqueous Medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121021. [PMID: 35180483 DOI: 10.1016/j.saa.2022.121021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/14/2023]
Abstract
New quinoline based fluorescent sensors 4 and 5 were rationally synthesized that exhibited excellent aggregation induced emission (AIE) in an aqueous medium. High fluorescence emission of sensors was accompanied by a noticeable redshift in their absorption and emission spectra that corresponds to the formation of J-aggregates. An AIE feature of sensors 4 and 5 was used for selective detection of Fe3+ and 4-NP in an aqueous medium that is attributed to the involvement of intermolecular charge transfer (ICT). The interaction mechanism of sensors with Fe3+ and 4-NP was investigated through 1H NMR titration, Jobs plots, dynamic light scattering (DLS), and DFT analysis. The fluorescence quenching response of sensors 4 and 5 displayed distinguished linear behavior with the concentrations of Fe3+ and limits of detection (LOD) were calculated to be 15 and 10 nM, respectively. Further, LOD of sensors 4 and 5 for 4-NP (7.3 and 4.1 nM, respectively) was very low compared to previously reported sensors. Moreover, sensors' coated test strips were fabricated for solid-supported detection of Fe3+ and 4-NP. Sensors were successfully applied for the detection and quantification of Fe3+ and 4-NP in real water samples. Additionally, sensors were used for the determination of trace amounts of Fe3+ in the human serum sample.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Waqar Rauf
- Pakistan Institute of Engineering and Applied Sciences, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
5
|
Paul S, Maity S, Halder S, Dutta B, Jana S, Jana K, Sinha C. Idiosyncratic recognition of Zn2+ and CN- using Pyrazolyl-Hydroxy-Coumarin scaffold and live cell imaging: Depiction of Luminescent Zn(II)-Metallocryptand. Dalton Trans 2022; 51:3198-3212. [DOI: 10.1039/d1dt03654h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-responsive sensitive and selective sensor design is one of the stimulating researches in sensor field. We have designed a pyrazolyl-hydroxy-coumarin scaffold, 7-hydroxy-4-methyl-8-(((5-phenyl-1H-pyrazol-3-yl)imino)methyl)-2H-chromen-2-one (H2L) and characterized by spectroscopic data (1H-NMR,13C-NMR, ESI-MS,...
Collapse
|
6
|
Das A, Das G. A chromone-based multi-selective sensor: applications in paper strips and real sample. NEW J CHEM 2022. [DOI: 10.1039/d2nj04115d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromone-based multi-selective sensor: applications in a paper strip and real sample.
Collapse
Affiliation(s)
- Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
7
|
Bozkurt S, Halay E. Synthesis, application and AIE properties of novel fluorescent tetraoxocalix[2]arene[2]triazine: The detection of a hazardous anion, cyanate. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|
9
|
Fatma N, Mehata MS, Pandey N, Pant S. Flavones Fluorescence-Based Dual Response Chemosensor for Metal Ions in Aqueous Media and Fluorescence Recovery. J Fluoresc 2020; 30:759-772. [DOI: 10.1007/s10895-020-02540-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
|
10
|
Sarih NM, Ciupa A, Moss S, Myers P, Slater AG, Abdullah Z, Tajuddin HA, Maher S. Furo[3,2-c]coumarin-derived Fe 3+ Selective Fluorescence Sensor: Synthesis, Fluorescence Study and Application to Water Analysis. Sci Rep 2020; 10:7421. [PMID: 32366859 PMCID: PMC7198544 DOI: 10.1038/s41598-020-63262-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023] Open
Abstract
Furocoumarin (furo[3,2-c]coumarin) derivatives have been synthesized from single step, high yielding (82-92%) chemistry involving a 4-hydroxycoumarin 4 + 1 cycloaddition reaction. They are characterized by FTIR, 1H-NMR, and, for the first time, a comprehensive UV-Vis and fluorescence spectroscopy study has been carried out to determine if these compounds can serve as useful sensors. Based on the fluorescence data, the most promising furocoumarin derivative (2-(cyclohexylamino)-3-phenyl-4H-furo[3,2-c]chromen-4-one, FH), exhibits strong fluorescence (ФF = 0.48) with long fluorescence lifetime (5.6 ns) and large Stokes' shift, suggesting FH could be used as a novel fluorescent chemosensor. FH exhibits a highly selective, sensitive and instant turn-off fluorescence response to Fe3+ over other metal ions which was attributed to a charge transfer mechanism. Selectivity was demonstrated against 13 other competing metal ions (Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+ and Ru3+) and aqueous compatibility was demonstrated in 10% MeOH-H2O solution. The FH sensor coordinates Fe3+ in a 1:2 stoichiometry with a binding constant, Ka = 5.25 × 103 M-1. This novel sensor has a limit of detection of 1.93 µM, below that of the US environmental protection agency guidelines (5.37 µM), with a linear dynamic range of ~28 (~2-30 µM) and an R2 value of 0.9975. As an exemplar application we demonstrate the potential of this sensor for the rapid measurement of Fe3+ in mineral and tap water samples demonstrating the real-world application of FH as a "turn off" fluorescence sensor.
Collapse
Affiliation(s)
- Norfatirah Muhamad Sarih
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 GJ, UK
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alexander Ciupa
- Materials Innovation Factory, University of Liverpool, 51 Oxford St, Liverpool, L7 3NY, UK
| | - Stephen Moss
- Materials Innovation Factory, University of Liverpool, 51 Oxford St, Liverpool, L7 3NY, UK
| | - Peter Myers
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK
| | - Anna Grace Slater
- Materials Innovation Factory, University of Liverpool, 51 Oxford St, Liverpool, L7 3NY, UK
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK
| | - Zanariah Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hairul Anuar Tajuddin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 GJ, UK.
| |
Collapse
|
11
|
Ahfad N, Mohammadnezhad G, Meghdadi S, Farrokhpour H. A naphthylamide based fluorescent probe for detection of Al 3+, Fe 3+, and CN - with high sensitivity and selectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117753. [PMID: 31732474 DOI: 10.1016/j.saa.2019.117753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
A naphthylamide based fluorescent chemosensor, N,N'-(1,2-phenylene)bis(1-hydroxy-2-naphthamide) (H4L), for detection of Fe3+ and Al3+ cations as well as CN- anion is reported. This compound has been synthesized by a novel and facile synthetic method with high yield and characterized by FT-IR, 1H NMR, elemental analysis, and UV-Vis spectroscopy. It could detect Fe3+ and Al3+ ions in different media with different excitation and emission wavelengths. In DMSO solution, H4L showed selective ON-OFF quenching of its 451 nm emission in the presence of Fe3+. On the other hand, in DMF solution, H4L exhibited selective OFF-ON fluorescence upon the addition of Al3+, the intensity at 429 nm increases drastically by 24-fold. Also, among the anions, the probe can selectively distinguish CN- by deprotonation of OH and NH groups, as proved by 1H NMR titration. TD-DFT calculation supports the UV-Vis and fluorescence measurements of the chemosensor.
Collapse
Affiliation(s)
- Neda Ahfad
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | | | - Soraia Meghdadi
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
12
|
Zhang R, Hu L, Xu Z, Song Y, Li H, Zhang X, Gao X, Wang M, Xian C. A highly selective probe for fluorescence turn-on detection of Fe3+ ion based on a novel spiropyran derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Li Y, Pan W, Zheng C, Pu S. A diarylethene derived Fe3+ fluorescent chemosensor and its application in wastewater analysis. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Gong X, Ding X, Jiang N, Zhong T, Wang G. Benzothiazole-based fluorescence chemosensors for rapid recognition and “turn-off” fluorescence detection of Fe3+ ions in aqueous solution and in living cells. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Hou L, Liu T, Gong Y, Li J, Deng C, Zhang C, Wang Y, Shuang S, Liang W. A turn-on Schiff base fluorescent probe for the exogenous and endogenous Fe 3+ ion sensing and bioimaging of living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj04315j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Schiff base fluorescent probe, namely naphthalic anhydride – (2-pyridine) hydrazone (NAH), has been synthesized and developed for the highly selective and sensitive monitoring of Fe3+ ions in an aqueous solution and living cells.
Collapse
Affiliation(s)
- Lingjie Hou
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- P. R. China
- Humic Acid Engineering and Technology Research Center of Shanxi Province
| | - Tao Liu
- Department of Chemistry and Chemical Engineering
- Lvliang University
- Lvliang 033000
- P. R. China
| | - Yaling Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Jin Li
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- P. R. China
| | - Chenhua Deng
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- P. R. China
- Humic Acid Engineering and Technology Research Center of Shanxi Province
| | - Caifeng Zhang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong 030619
- P. R. China
- Humic Acid Engineering and Technology Research Center of Shanxi Province
| | - Yu Wang
- Department of Chemistry
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Shaomin Shuang
- Department of Chemistry
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Wenting Liang
- Department of Chemistry
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
16
|
Tang T, Wang J, Xu D. Synthesis of a novel hyperbranched polymer and its application in multi-channel sensing Fe3+. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04042-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Kamimura A, Sakamoto S, Umemoto H, Kawamoto T, Sumimoto M. 2-Sulfanylhydroquinone Dimer as a Switchable Fluorescent Dye. Chemistry 2019; 25:14081-14088. [PMID: 31418938 DOI: 10.1002/chem.201903436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 02/05/2023]
Abstract
A new dye was developed, the photoluminescence properties of which are controlled by a chemical reaction. The fluorescence properties of 2-sulfanylhydroquinone dimers depend on the number of hydroxyl groups that are acylated. Unprotected or monoacylated 2-sulfanylhydroquinone dimers displayed good fluorescence properties, whereas diacylated and tetraacylated 2-sulfanylhydroquinone dimers showed dramatically decreased fluorescence. A monomesylated derivative was devised, which shows good fluorescence characteristics as a switching fluorescence dye through a chemical reaction.
Collapse
Affiliation(s)
- Akio Kamimura
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Sanshiro Sakamoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Haruka Umemoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Takuji Kawamoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Michinori Sumimoto
- Department of Environmental Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| |
Collapse
|
18
|
Wang M, Zhang YM, Zhao QY, Fu ZH, Zhang ZH. A new acetal as a fluorescent probe for highly selective detection of Fe3+ and its application in bioimaging. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Madhu P, Sivakumar P. Selective and sensitive detection of Fe3+ ions using quinoline-based fluorescent chemosensor: Experimental and DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Tang Y, Huang Y, Chen Y, Lu L, Wang C, Sun T, Wang M, Zhu G, Yang Y, Zhang L, Zhu J. A coumarin derivative as a "turn-on" fluorescence probe toward Cd 2+ in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:359-365. [PMID: 31029021 DOI: 10.1016/j.saa.2019.03.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
A novel coumarin-derived Schiff base fluorescence probe (CTB) has been successfully designed and synthesized through exploiting tris-(2-aminothyl)-amine moiety as a recognition unit for the highly selective and sensitive detection of Cd2+. It is based on CN isomerization and the photo-induced electron transfer (PET) mechanism. The investigation into the sensing processes showed that CTB exhibited an excellent selectivity for Cd2+. The sensitivity exceeded that of other competing metal ions, and had a high sensitivity, a detection limit of 1.16 × 10-7 M with the association constants of 1.37 × 1011 M-2. The experiments including Job's plot, UV-Vis titration, 1H NMR titration and ESI-MS spectrum established that the probe CTB binds to Cd2+ in a 1:2 ratio. Further studies also demonstrated that probe CTB can be successfully applied to the fluorescence imaging of Cd2+ in HepG-2 cells.
Collapse
Affiliation(s)
- Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Yang Huang
- School of Textiles, Nantong University, Nantong 226019, PR China
| | - Yihan Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Linxia Lu
- School of Textiles, Nantong University, Nantong 226019, PR China
| | - Chun Wang
- School of Textiles, Nantong University, Nantong 226019, PR China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Guohua Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Yun Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Lin Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
21
|
Kang T, Wang H, Wang X, Feng L. A facile Zn(II) probe based on intramolecular charge transfer with fluorescence red-shift. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Dwivedi R, Singh DP, Singh S, Singh AK, Chauhan BS, Srikrishna S, Singh VP. Logic gate behavior and intracellular application of a fluorescent molecular switch for the detection of Fe3+ and cascade sensing of F− in pure aqueous media. Org Biomol Chem 2019; 17:7497-7506. [DOI: 10.1039/c9ob01398a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature and coordination sites of a Schiff base 3,3′-(1E,1′E)-(1,3-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-2-ol (APHN), are tuned by its selective reduction to design a highly efficient fluorescent probe RAPHN.
Collapse
Affiliation(s)
- Romi Dwivedi
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Divya P. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Saumya Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Ashish K. Singh
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Brijesh S. Chauhan
- Department of Bio Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - S. Srikrishna
- Department of Bio Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod P. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
23
|
Purkait R, Dey A, Dey S, Ray PP, Sinha C. Design of a coumarinyl-picolinoyl hydrazide Schiff base for the fluorescence turn-on–off sequential sensing of Al3+ and nitroaromatics, and electronic device fabrication. NEW J CHEM 2019. [DOI: 10.1039/c9nj03377g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing a small organic molecule for fluorescence sensing and electrical conductivity is a challenging task.
Collapse
Affiliation(s)
- Rakesh Purkait
- Department of Chemistry and Jadavpur University
- Kolkata 700 032
- India
| | - Arka Dey
- Department of Physics
- Jadavpur University
- Kolkata 700 032
- India
- Department of Condensed Matter Physics and Material Sciences
| | - Sunanda Dey
- Department of Chemistry and Jadavpur University
- Kolkata 700 032
- India
| | | | | |
Collapse
|
24
|
Pivetta T, Masuri S, Cabiddu MG, Caltagirone C, Pintus A, Massa M, Isaia F, Cadoni E. A novel ratiometric and turn-on fluorescent coumarin-based probe for Fe(iii). NEW J CHEM 2019. [DOI: 10.1039/c9nj02044f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
6-Methoxy-3-(pyridin-2-yl)-2H-chromen-2-one exhibited fluorescence enhancement in the presence of Fe(iii). This molecule was a selective fluorescent chemosensor for Fe(iii).
Collapse
Affiliation(s)
- Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Sebastiano Masuri
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Maria Grazia Cabiddu
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Michela Massa
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| |
Collapse
|
25
|
Dicationic imidazolium salts as fluorescent probes for selective detection of Fe3+ ion in pure aqueous media. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|