1
|
Lu J, Dong C, Cheng Y, Zhang M, Pang Q, Zhou S, Yang B, Peng X, Wang C, Wu S. Ankaflavin and Monascin Prevent Fibrillogenesis of Hen Egg White Lysozyme: Focus on Noncovalent and Covalent Interactions. J Phys Chem B 2024; 128:10051-10062. [PMID: 39368112 DOI: 10.1021/acs.jpcb.4c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Misfolding and amyloid fibrillogenesis of proteins have close relationships with several neurodegenerative diseases. The present work investigates the inhibitive activities of ankaflavin (AK) and monascin (MS), two yellow pigments separated from Monascus-fermented rice, on hen egg white lysozyme (HEWL) fibrillation. The results demonstrated that AK/MS suppressed HEWL fibrillation through interfering with the nucleation period and AK was more potent. Fluorescence quenching and in silico docking studies revealed that AK/MS bond to HEWL by the formation of noncovalent forces with some critical amino acid residues that tend to form fibrils. Compared to those of AK, hydrogen bonding interactions between MS and Asn46, Trp62, and Trp63 residues in HEWL were slightly weaker. Besides, the covalent interaction between MS and HEWL with the binding site of Arg68 was found. These observations offered reasonable explanations for the difference in the mechanisms of AK and MS inhibiting HEWL fibrillogenesis. In a word, all data acquired herein indicated AK/MS as potent candidates for the improvement and treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Changyan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yi Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Meihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qianchan Pang
- Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Sumei Zhou
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Benxu Yang
- Tianjin Lida Food Technology Co., Ltd., Tianjin 300393, PR China
| | - Xin Peng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
2
|
Ni J, Zhang Y, Zhai S, Xiong H, Ming Y, Ma Y. Preparation of valine-curcumin conjugate and its in vitro antibacterial and antitumor activity and in vivo biological effects on American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109615. [PMID: 38719095 DOI: 10.1016/j.fsi.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Curcumin (Cur) exhibits diverse natural pharmacological activities, despite its limited water solubility (hydrophobicity) and low bioavailability. In this investigation, a valine-curcumin conjugate (Val-Cur) was synthesized through amino acid side chain modification, and its solubility increased to 1.78 mg/mL. In vitro experimental findings demonstrated that the antibacterial activity of Val-Cur against Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus was significantly superior to that of Cur. The inhibition rate of Val-Cur against HepG2 (human hepatocellular carcinoma) cells was higher than that of Cur at low concentrations (below 25 μmol/L), although the IC50 value of Val-Cur did not differ significantly from that of Cur. In vivo biological effects of Val-Cur were assessed by adding it into the feed (150 mg/kg) of American eels (Anguilla rostrata). Val-Cur significantly improved the growth performance (↑weight gain rate, ↑specific growth rate, and ↓feed conversion rate) and activities of intestinal digestive enzymes (amylase and lipase) and antioxidant enzymes (superoxide dismutase) in American eels. Additionally, Val-Cur significantly improved serum biochemical indices (↑high-density lipoprotein cholesterol, ↓low-density lipoprotein cholesterol, ↓aspartate and alanine aminotransferases). Furthermore, Val-Cur increased intestinal microbial diversity, reduced the abundance of potentially pathogenic bacteria (Spiroplasma, Clostridium, and Pseudomonas), and elevated the abundance of beneficial digestion-promoting bacteria (Romboutsia, Phyllobacterium, Romboutsia sedimentorum, and Clostridium butyricum) conducive to glucose metabolism (P < 0.05). To the best of our knowledge, this study is the first to explore water-soluble curcumin in aquaculture, and the findings will lay the groundwork for the potential application of water-soluble curcumin in the field of aquaculture.
Collapse
Affiliation(s)
- Jing Ni
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yue Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Shaowei Zhai
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Yanlin Ming
- Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, 361002, China.
| | - Ying Ma
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Kumari S, Das S. Functional amyloid fibrils of biofilm-forming marine bacterium Pseudomonas aeruginosa PFL-P1 interact spontaneously with pyrene and augment the biodegradation. Int J Biol Macromol 2024; 266:131266. [PMID: 38556224 DOI: 10.1016/j.ijbiomac.2024.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Bacteria thrive in biofilms embedding in the three-dimensional extracellular polymeric substances (EPS). Functional Amyloid in Pseudomonas (Fap), a protein in EPS, efficiently sequesters polycyclic aromatic hydrocarbons (PAHs). Present study reports the characterization of Fap fibrils from Pseudomonas aeruginosa PFL-P1 and describes the interaction with pyrene to assess the impact on pyrene degradation. Overexpression of fap in E. coli BL21(DE3) cells significantly enhances biofilm formation (p < 0.0001) and amyloid production (p = 0.0002), particularly with pyrene. Defibrillated Fap analysis reveals FapC monomers and increased fibrillation with pyrene. Circular Dichroism (CD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) unveil characteristic amyloid peaks and structural changes in Fap fibrils upon pyrene exposure. 3D-EEM analysis identifies a protein-like fluorophore in Fap fibrils, exhibiting pyrene-induced fluorescence quenching. Binding constants range from 5.23 to 7.78 M-1, with ΔG of -5.10 kJ mol-1 at 298 K, indicating spontaneous and exothermic interaction driven by hydrophobic forces. Exogenous Fap fibrils substantially increased the biofilm growth and pyrene degradation by P. aeruginosa PFL-P1 from 46 % to 64 % within 7 days (p = 0.0236). GC-MS identifies diverse metabolites, implying phthalic acid pathway in pyrene degradation. This study deepens insights into structural dynamics of Fap fibrils when exposed to pyrene, offering potential application in environmental bioremediation.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Studies on anti-colon cancer potential of nanoformulations of curcumin and succinylated curcumin in mannosylated chitosan. Int J Biol Macromol 2023; 235:123827. [PMID: 36858085 DOI: 10.1016/j.ijbiomac.2023.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Colon cancer (CRC) is the second leading cause of death and the third most diagnosed cancer worldwide. Although curcumin (CUR) has demonstrated a potent anticancer activity, it is characterized by its poor solubility, low bioavailability, and instability. This study is a projection from a previous investigation where CUR and succinylated CUR (CUR.SA) were separately encapsulated in mannosylated-chitosan nanoparticles (CM-NPs) to form CUR-NPs and CUR.SA-NPs, respectively. Here, we aim to assess the anti-CRC activity of these two nanoformulations. Cytotoxicity studies using CCK-8 assay indicated that both CUR-NPs and CUR.SA-NPs have a dose and time-dependent toxicity towards CRC human cell-lines (HCT116 and SW480), and more cytotoxic compared to free CUR or CUR-SA in a time-dependent manner. A significant induction of early and late apoptosis in the CUR-NPs and CUR.SA-NPs treated CRC cell lines compared to untreated cells was observed. Western blotting analyses confirmed the induction of apoptosis through activation of Caspase signaling compared to untreated cells. Based on the physicochemical properties of CUR-NPs and CUR.SA-NPs along with the data from the in vitro studies, we may conclude these nanoparticle formulations hold very promising attributes, worthy of further investigations for its role in the management of CRC.
Collapse
|
5
|
Gao X, Wang S, Dong J, Li J, Zhang Y, Wu Y, Ba X. Effect of mono- and diketone group in curcumin analogues on amyloid fibrillation of hen egg white lysozyme. Biophys Chem 2023; 292:106913. [PMID: 36330890 DOI: 10.1016/j.bpc.2022.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Curcumin has attracted more attention because of its inhibition efficacy on protein amyloid fibrillation. However, the inhibition mechanism was still ambiguous and the clinical application of curcumin was greatly limited because of its poor stability at physiological conditions for the presence of β-diketone moiety. In this paper, a new mono-ketone-containing curcumin analogue (MDHC) was designed and synthesized to realize the possible inhibition mechanism and unveil the important role of β-diketone moiety of curcumin in the inhibition process of amyloid fibrillation using hen egg white lysozyme (HEWL) as model protein. Although all experiment results (ThT, CR, ANS and TEM) showed that the inhibitory capacity of curcumin was better than MDHC, MDHC still could show obvious inhibition effect. Molecular docking showed that both curcumin and MDHC could bind with HEWL by hydrogen bond of phenloic hydroxyl and the binding energy of MDHC was higher than that of curcumin. All the findings inferred that β-diketone group was one of great important groups in the inhibition process of HEWL amyloid fibrillation, which provided more room to construct novel inhibition reagents.
Collapse
Affiliation(s)
- Xuejiao Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Jiawei Dong
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Jie Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, PR China
| | - Yuxia Wu
- Department of Computer Teaching, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China
| |
Collapse
|
6
|
The Efficacy of Psychological Care and Chinese Herbal Decoction in Postoperative Chemotherapy Patients with Endometrial Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5700637. [PMID: 35222888 PMCID: PMC8881117 DOI: 10.1155/2022/5700637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Background. In recent years, the incidence of endometrial cancer (EC) has been on the rise worldwide. The purpose of this study was to investigate the efficacy of psychological care and Chinese herbal decoction in EC patients with postoperative chemotherapy. Methods. 80 EC patients with postoperative chemotherapy were randomly divided into the observation group and control group. The control group was given psychotherapy. The observation group was given psychological care plus Chinese herbal decoction treatment. HE4, CA125, traditional Chinese medicine (TCM) syndrome scores, toxic and side effects, and quality of life scores before and after treatment were observed. Results. After treatment, the total effective rate of the observation group was higher than that of the control group. After treatment, serum HE4 and CA125 levels in the observation group were lower than those in the control group. In addition, CD3+ and CD4+ levels in the observation group were higher than those in the control group. Meanwhile, the CD8+ level in the observation group was lower than that in the control group. Compared with the control group, the quality of life in the observation group was significantly improved, and the incidence of adverse reactions was reduced. Conclusion. Chinese herbal decoction combined with psychological care can improve the clinical symptoms, alleviate the toxic and side effects, and improve the life quality of EC patients with postoperative chemotherapy.
Collapse
|
7
|
Khajeh Dangolani S, Panahi F, Khalafi-Nezhad A. Synthesis of new curcumin-based aminocarbonitrile derivatives incorporating 4H-pyran and 1,4-dihydropyridine heterocycles. Mol Divers 2021; 25:2123-2135. [PMID: 32419085 DOI: 10.1007/s11030-020-10104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
A multicomponent reaction containing curcumin, aldehydes, malononitrile and amine was developed for the one-pot synthesis of a novel library of 4H-pyran and 1,4-dihyropyridin heterocycles incorporating curcumin moiety. The products were obtained in the presence of p-toluenesulfonic acid as catalyst in ethanol as solvent in good to excellent yields.
Collapse
Affiliation(s)
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| |
Collapse
|
8
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
9
|
Wang M, Wang S, Li B, Tian Y, Zhang H, Bai L, Ba X. Synthesis of linear polyglucoside and inhibition on the amyloid fibril formation of hen egg white lysozyme. Int J Biol Macromol 2020; 166:771-777. [PMID: 33157132 DOI: 10.1016/j.ijbiomac.2020.10.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
A novel polymer poly (6-O-MMAGlc) has been synthesized via free radical polymerization of monomer methyl 6-O-methacryloyl-α-D-glucoside (6-O-MMAGlc) and characterized. The influence of poly(6-O-MMAGlc) on the formation of hen egg white lysozyme (HEWL) amyloid fibril was detailly investigated, indicating that the polymer could effectively inhibit the formation of HEWL amyloid fibril. The formation kinetics of HEWL amyloid fibril with the presence of poly(6-O-MMAGlc) was measured by Thioflavin T (ThT) fluorescence method, demonstrating that poly(6-O-MMAGlc) could significantly inhibit the amyloid fibril formation of HEWL in a dose-dependent manner. The inhibitory result was furtherly illustrated by congo red (CR) binding assay, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism (CD) spectroscopy and transmission electron microscope (TEM).
Collapse
Affiliation(s)
- Mengna Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Benye Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yuelan Tian
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Haisong Zhang
- No. 212 Yuhuadonglu, Department of Nephrology, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China.
| |
Collapse
|
10
|
Qiao J, Hwang YH, Kim DP, Qi L. Simultaneous Monitoring of Temperature and Ca2+ Concentration Variation by Fluorescent Polymer during Intracellular Heat Production. Anal Chem 2020; 92:8579-8583. [DOI: 10.1021/acs.analchem.0c01534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yoon-Ho Hwang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Al Adem K, Lukman S, Kim TY, Lee S. Inhibition of lysozyme aggregation and cellular toxicity by organic acids at acidic and physiological pH conditions. Int J Biol Macromol 2020; 149:921-930. [DOI: 10.1016/j.ijbiomac.2020.01.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
|
12
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. Int J Mol Sci 2020; 21:ijms21061975. [PMID: 32183162 PMCID: PMC7139886 DOI: 10.3390/ijms21061975] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Worldwide, Alzheimer’s disease (AD) is the most common neurodegenerative multifactorial disease influencing the elderly population. Nowadays, several medications, among them curcumin, are used in the treatment of AD. Curcumin, which is the principal component of Curcuma longa, has shown favorable effects forsignificantly preventing or treating AD. During the last decade, the scientific community has focused their research on the optimization of therapeutic properties and on the improvement of pharmacokinetic properties of curcumin. This review summarizes bibliographical data from 2009 to 2019 on curcumin analogues, derivatives, and hybrids, as well as their therapeutic, preventic, and diagnostic applications in AD. Recent advances in the field have revealed that the phenolic hydroxyl group could contribute to the anti-amyloidogenic activity. Phenyl methoxy groups seem to contribute to the suppression of amyloid-β peptide (Aβ42) and to the suppression of amyloid precursor protein (APP) andhydrophobic interactions have also revealed a growing role. Furthermore, flexible moieties, at the linker, are crucial for the inhibition of Aβ aggregation. The inhibitory activity of derivatives is increased with the expansion of the aromatic rings. The promising role of curcumin-based compounds in diagnostic imaging is highlighted. The keto-enol tautomerism seems to be a novel modification for the design of amyloid-binding agents. Molecular docking results, (Q)SAR, as well as in vitro and in vivo tests highlight the structures and chemical moieties that are correlated with specific activity. As a result, the knowledge gained from the existing research should lead to the design and synthesis ofinnovative and multitargetedcurcumin analogues, derivatives, or curcumin hybrids, which would be very useful drug and tools in medicine for both diagnosis and treatment of AD.
Collapse
|
13
|
Li W, Jiang ZF, Tan L, Wang SX, Wang CZ, Zhang JW, Zhou LD, Zhang QH, Yuan CS. Rapid measurements of curcumin from complex samples coupled with magnetic biocompatibility molecularly imprinted polymer using electrochemical detection. J Sep Sci 2020; 43:1173-1182. [PMID: 31919992 DOI: 10.1002/jssc.201900884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
Abstract
Curcumin widely exists in food, and rapid selective and accurate detection of curcumin have great significance in chemical industry. In this experiment, a new magnetic biocompatibility molecularly imprinted polymer was prepared with nontoxic and biocompatible Zein to adsorb curcumin selectively. The polymer has high biocompatibility, good adsorption capacity, and specific adsorption for curcumin. Combined with portable electrochemical workstations, the polymer can be used to detect curcumin rapidly and cost-effectively. Using curcumin as a template and Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3 O4 particles for solid phase extraction. The experimental results showed that the polymer reached large adsorption capacity (32.12 mg/g) with fast kinetics (20 min). The adsorption characteristic of the polymer followed the Langmuir isotherm and pseudo-second-order kinetic models. Hexacyanoferrate was used as electrochemical probe to generate signals, and the linear range was 5-200 µg/mL for measuring curcumin. The experimental analysis showed that the polymer was an ideal material for selective accumulation of curcumin from complex samples. This approach has been successfully applied to the determination of curcumin in food samples with electrochemical detection, indicating that this is a feasible and practical technique.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Zhuang-Fei Jiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Ling Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Shu-Xian Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Jia-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing, P. R. China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China.,Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Cui L, Wang S, Zhang J, Wang M, Gao Y, Bai L, Zhang H, Ma G, Ba X. Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117365. [PMID: 31323497 DOI: 10.1016/j.saa.2019.117365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/15/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Two novel Boc-L-isoleucine-functionalized curcumin derivatives have been synthesized and characterized, which exhibited enhanced solubility in water compared with the natural curcumin. The solubility could reach 2.12mg/mL for the monosubstituted compound and 3.05mg/mL for the disubstituted compound, respectively. Their anti-amyloidogenic capacity on the model protein, hen egg white lysozyme (HEWL), was examined in aqueous solution. ThT fluorescence assay showed that the operation concentration was only 0.5mM when the inhibition ratio was above 70%. Meanwhile, the inhibitory capacity of monosubstituted curcumin derivative on the formation of HEWL amyloid fibrils was found to be superior to that of disubstituted derivative, suggesting that the phenolic hydroxyl group might contribute to the anti-amyloidogenic activity. Interaction study showed that both curcumin derivatives could bind with HEWL near tryptophan residues and form new ground-state complex before HEWL self-assemblies into amyloid fibrils and thus inhibits the formation of amyloid fibrils. Both of the two cucumin derivatives have displayed low cytotoxicity with HeLa cell.
Collapse
Affiliation(s)
- Liangliang Cui
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Jian Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Mengna Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yan Gao
- Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Hailei Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Gang Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China.
| |
Collapse
|
15
|
Zhang J, Wen H, Shen F, Wang X, Shan C, Chai C, Liu J, Li W. Synthesis and biological evaluation of a novel series of curcumin-peptide derivatives as PepT1-mediated transport drugs. Bioorg Chem 2019; 92:103163. [DOI: 10.1016/j.bioorg.2019.103163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
16
|
Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182:111631. [DOI: 10.1016/j.ejmech.2019.111631] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
17
|
Minafra L, Porcino N, Bravatà V, Gaglio D, Bonanomi M, Amore E, Cammarata FP, Russo G, Militello C, Savoca G, Baglio M, Abbate B, Iacoviello G, Evangelista G, Gilardi MC, Bondì ML, Forte GI. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci Rep 2019; 9:11134. [PMID: 31366901 PMCID: PMC6668411 DOI: 10.1038/s41598-019-47553-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
In breast cancer (BC) care, radiotherapy is considered an efficient treatment, prescribed both for controlling localized tumors or as a therapeutic option in case of inoperable, incompletely resected or recurrent tumors. However, approximately 90% of BC-related deaths are due to the metastatic tumor progression. Then, it is strongly desirable to improve tumor radiosensitivity using molecules with synergistic action. The main aim of this study is to develop curcumin-loaded solid nanoparticles (Cur-SLN) in order to increase curcumin bioavailability and to evaluate their radiosensitizing ability in comparison to free curcumin (free-Cur), by using an in vitro approach on BC cell lines. In addition, transcriptomic and metabolomic profiles, induced by Cur-SLN treatments, highlighted networks involved in this radiosensitization ability. The non tumorigenic MCF10A and the tumorigenic MCF7 and MDA-MB-231 BC cell lines were used. Curcumin-loaded solid nanoparticles were prepared using ethanolic precipitation and the loading capacity was evaluated by UV spectrophotometer analysis. Cell survival after treatments was evaluated by clonogenic assay. Dose–response curves were generated testing three concentrations of free-Cur and Cur-SLN in combination with increasing doses of IR (2–9 Gy). IC50 value and Dose Modifying Factor (DMF) was measured to quantify the sensitivity to curcumin and to combined treatments. A multi-“omic” approach was used to explain the Cur-SLN radiosensitizer effect by microarray and metobolomic analysis. We have shown the efficacy of the Cur-SLN formulation as radiosensitizer on three BC cell lines. The DMFs values, calculated at the isoeffect of SF = 50%, showed that the Luminal A MCF7 resulted sensitive to the combined treatments using increasing concentration of vehicled curcumin Cur-SLN (DMF: 1,78 with 10 µM Cur-SLN.) Instead, triple negative MDA-MB-231 cells were more sensitive to free-Cur, although these cells also receive a radiosensitization effect by combination with Cur-SLN (DMF: 1.38 with 10 µM Cur-SLN). The Cur-SLN radiosensitizing function, evaluated by transcriptomic and metabolomic approach, revealed anti-oxidant and anti-tumor effects. Curcumin loaded- SLN can be suggested in future preclinical and clinical studies to test its concomitant use during radiotherapy treatments with the double implications of being a radiosensitizing molecule against cancer cells, with a protective role against IR side effects.
Collapse
Affiliation(s)
- Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Nunziatina Porcino
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Valentina Bravatà
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy.
| | - Daniela Gaglio
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Marcella Bonanomi
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Erika Amore
- Istituto per lo Studio dei Materiali Nanostrutturati-Consiglio Nazionale delle Ricerche (ISMN-CNR), Palermo, Italy
| | - Francesco Paolo Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Carmelo Militello
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Gaetano Savoca
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Margherita Baglio
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Boris Abbate
- Medical Physics Department, ARNAS-Civico Hospital, Palermo, Italy
| | | | | | - Maria Carla Gilardi
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati-Consiglio Nazionale delle Ricerche (ISMN-CNR), Palermo, Italy
| | - Giusi Irma Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| |
Collapse
|
18
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
19
|
Characterization of the binding of triprolidine hydrochloride to hen egg white lysozyme by multi-spectroscopic and molecular docking techniques. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Inhibition of Protein Aggregation by Several Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8613209. [PMID: 29765505 PMCID: PMC5889867 DOI: 10.1155/2018/8613209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/31/2017] [Accepted: 01/09/2018] [Indexed: 01/27/2023]
Abstract
Amyloid fibril formation is a shared property of all proteins; therefore, model proteins can be used to study this process. We measured protein aggregation of the model amyloid-forming protein stefin B in the presence and absence of several antioxidants. Amyloid fibril formation by stefin B was routinely induced at pH 5 and 10% TFE, at room temperature. The effects of antioxidants NAC, vitamin C, vitamin E, and the three polyphenols resveratrol, quercetin, and curcumin on the kinetics of fibril formation were followed using ThT fluorescence. Concomitantly, the morphology and amount of the aggregates and fibrils were checked by transmission electron microscopy (TEM). The concentration of the antioxidants was varied, and it was observed that different modes of action apply at low or high concentrations relative to the binding constant. In order to obtain more insight into the possible mode of binding, docking of NAC, vitamin C, and all three polyphenols was done to the monomeric form of stefin B.
Collapse
|
21
|
Liu F, Wu Y, Bai L, Peng X, Zhang H, Zhang Y, An P, Wang S, Ma G, Ba X. Facile preparation of hyperbranched glycopolymers via an AB3* inimer promoted by a hydroxy/cerium(iv) redox process. Polym Chem 2018. [DOI: 10.1039/c8py01134f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The facile preparation of hyperbranched glycopolymers was performed without protecting group chemistry, where the methyl-6-O-methacryloyl-α-d-glucoside (6-O-MMAGlc) monomer was adopted as an AB3*-type inimer.
Collapse
Affiliation(s)
- Feng Liu
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Libin Bai
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Xixi Peng
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Hailei Zhang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Yuangong Zhang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Puying An
- Medical College
- Hebei University
- Baoding
- P.R. China
| | - Sujuan Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Gang Ma
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
| | - Xinwu Ba
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P.R. China
- Affiliated Hospital of Hebei University
| |
Collapse
|