1
|
Yan Y, Mei R, Ma J, Huang Y, Zhu Y, Lang Z, Li C, Tang H, Zhang W, Lu J, Schmidt OG, Zhang K, Zhu M. Modular Design of Functional Glucose Monomer and Block Co-Polymer toward Stable Zn Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400292. [PMID: 38659378 DOI: 10.1002/smll.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Aqueous Zn batteries employing mildly acidic electrolytes have emerged as promising contenders for safe and cost-effective energy storage solutions. Nevertheless, the intrinsic reversibility of the Zn anode becomes a focal concern due to the involvement of acidic electrolyte, which triggers Zn corrosion and facilitates the deposition of insulating byproducts. Moreover, the unregulated growth of Zn over cycling amplifies the risk of internal short-circuiting, primarily induced by the formation of Zn dendrites. In this study, a class of glucose-derived monomers and a block copolymer are synthesized through a building-block assembly strategy, ultimately leading to uncover the optimal polymer structure that suppresses the Zn corrosion while allowing efficient ion conduction with a substantial contribution from cation transport. Leveraging these advancements, remarkable enhancements are achieved in the realm of Zn reversibility, exemplified by a spectrum of performance metrics, including robust cycling stability without voltage overshoot and short-circuiting during 3000 h of cycling, stable operation at a high depth of charge/discharge of 75% and a high current density, >95% Coulombic efficiency over 2000 cycles, successful translation of the anode improvement to full cell performance. These polymer designs offer a transformative path based on the modular synthesis of polymeric coatings toward highly reversible Zn anode.
Collapse
Affiliation(s)
- Yaping Yan
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Ruhuai Mei
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Jiachen Ma
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Yang Huang
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, Guangdong, 511400, China
| | - Ying Zhu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Zhen Lang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Cheng Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Hongmei Tang
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Wenlan Zhang
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871, China
| | - Oliver G Schmidt
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- School of Science, TU Dresden, 01062, Dresden, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Minshen Zhu
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| |
Collapse
|
2
|
Grubišić S, Dahmani R, Djordjević I, Sentić M, Hochlaf M. Selective adsorption of sulphur dioxide and hydrogen sulphide by metal-organic frameworks. Phys Chem Chem Phys 2023; 25:954-965. [PMID: 36477115 DOI: 10.1039/d2cp04295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The removal of highly toxic gasses such as SO2 and H2S is important in various industrial and environmental applications. Metal organic frameworks (MOFs) are promising candidates for the capture of toxic gases owing to their favorable properties such as high selectivity, moisture stability, thermostability, acid gas resistance, high sorption capacity, and low-cost regenerability. In this study, we perform first principles density functional theory (DFT) and grand-canonical Monte Carlo (GCMC) simulations to investigate the capture of highly toxic gases, SO2 and H2S, by the recently designed ZTF and MAF-66 MOFs. Our results indicate that ZTF and MAF-66 show good adsorption performances for SO2 and H2S capture. The nature of the interactions between H2S or SO2 and the pore surface cavities was examined at the microscopic level. SO2 is adsorbed on the pore surface through two types of hydrogen bonds, either between O of SO2 with the closest H of the triazole 5-membred ring or between O of SO2 with the hydrogen of the amino group. For H2S inside the pores, the principal interactions between H2S and surface pores are due to a relatively strong hydrogen bonds established between the nitrogens of the organic part of MOFs and H2S. Also, we found that these interactions depend on the orientation of SO2/H2S inside the pores. Moreover, we have studied the influence of the presence of water and CO2 on H2S and SO2 capture by the ZTF MOF. The present GCMC simulations reveal that the addition of H2O molecules at low pressure leads to an enhancement of the H2S adsorption, in agreement with experimental findings. However, the presence of water molecules decreases the adsorption of SO2 irrespective of the pressure used. Besides, SO2 adsorption is increased in the presence of a small number of CO2 molecules, whereas the presence of carbon dioxide in ZTF pores has an unfavorable effect on the capture of H2S.
Collapse
Affiliation(s)
- S Grubišić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, Njegoševa 12, Belgrade, 11000, Serbia.
| | - R Dahmani
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes 77454, Champs sur Marne, France. .,University of Tunis El Manar, Department of Chemistry, Laboratory of Characterizations, Applications and Modeling of Materials (LCAMM), LR18ES08, Tunis, Tunisia
| | - I Djordjević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, Njegoševa 12, Belgrade, 11000, Serbia.
| | - M Sentić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, Njegoševa 12, Belgrade, 11000, Serbia.
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes 77454, Champs sur Marne, France.
| |
Collapse
|
3
|
Marzouk S, Ajili Y, Ben El Hadj Rhouma M, Ben Said R, Hochlaf M. Theoretical treatment of IO-X (X = N 2, CO, CO 2, H 2O) complexes. Phys Chem Chem Phys 2022; 24:7203-7213. [PMID: 35266935 DOI: 10.1039/d1cp05536d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N2, CO, CO2 and H2O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of ab initio post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N2, CO, CO2, H2O). Moreover, we found that the IO-X (X = N2, CO, CO2, H2O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).
Collapse
Affiliation(s)
- S Marzouk
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs de Monastir, Université de Monastir, Tunisia.,Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs sur Marne, France.
| | - Y Ajili
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis-El Manar, Tunis, Tunisia
| | - M Ben El Hadj Rhouma
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs de Monastir, Université de Monastir, Tunisia
| | - R Ben Said
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs sur Marne, France.
| |
Collapse
|
4
|
Dahmani R, Grubišić S, Djordjević I, Ben Yaghlane S, Boughdiri S, Chambaud G, Hochlaf M. In silico design of a new Zn-triazole based metal-organic framework for CO 2 and H 2O adsorption. J Chem Phys 2021; 154:024303. [PMID: 33445914 DOI: 10.1063/5.0037594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In search for future good adsorbents for CO2 capture, a nitrogen-rich triazole-type Metal-Organic Framework (MOF) is proposed based on the rational design and theoretical molecular simulations. The structure of the proposed MOF, named Zinc Triazolate based Framework (ZTF), is obtained by replacing the amine-organic linker of MAF-66 by a triazole, and its structural parameters are deduced. We used grand-canonical Monte Carlo (GCMC) simulations based on generic classical force fields to correctly predict the adsorption isotherms of CO2 and H2O. For water adsorption in MAF-66 and ZTF, simulations revealed that the strong hydrogen bonding interactions of water with the N atoms of triazole rings of the frameworks are the main driving forces for the high adsorption uptake of water. We also show that the proposed ZTF porous material exhibits exceptional high CO2 uptake capacity at low pressure, better than MAF-66. Moreover, the nature of the interactions between CO2 and the MAF-66 and ZTF surface cavities was examined at the microscopic level. Computations show that the interactions occur at two different sites, consisting of Lewis acid-Lewis base interactions and hydrogen bonding, together with obvious electrostatic interactions. In addition, we investigated the influence of the presence of H2O molecules on the CO2 adsorption on the ZTF MOF. GCMC simulations reveal that the addition of H2O molecules leads to an enhancement of the CO2 adsorption at very low pressures but a reduction of this CO2 adsorption at higher pressures.
Collapse
Affiliation(s)
- R Dahmani
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454 Champs sur Marne, France
| | - S Grubišić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Republic of Serbia
| | - I Djordjević
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Republic of Serbia
| | - S Ben Yaghlane
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, 2092 Tunis, Tunisia
| | - S Boughdiri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Caractérisations, Applications et Modélisation des Matériaux - LR18ES08, Tunis, Tunisia
| | - G Chambaud
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454 Champs sur Marne, France
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454 Champs sur Marne, France
| |
Collapse
|
5
|
Brusentzeva OI, Kharitonov YV, Fadeev DS, Shults EE. Synthesis and spectroscopic studies of furan-bridged polyazamacrocycles through 15,16-bis((prop-2-ynylamino)methyl)labdatriene transformations. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00965-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Dahmani R, Grubišić S, Yaghlane SB, Boughdiri S, Hochlaf M. Complexes of Zn(II)-Triazoles with CO 2 and H 2O: Structures, Energetics, and Applications. J Phys Chem A 2019; 123:5555-5565. [PMID: 31244122 DOI: 10.1021/acs.jpca.9b03228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using a first-principle methodology, we investigate the stable structures of the nonreactive and reactive clusters formed between Zn2+-triazoles ([Zn2+-Tz]) clusters and CO2 and/or H2O. In sum, we characterized two modes of bonding of [Zn2+-Tz] with CO2/H2O: the interaction is established through (i) a covalent bond between Zn2+ of [Zn2+-Tz] and oxygen atoms of CO2 or H2O and (ii) hydrogen bonds through N-H or C-H of [Zn2+-Tz] and oxygen atoms of H2O or CO2, N-H···O. We also identified intramolecular proton transfer processes induced by complexation. Indeed, water drastically changes the shape of the energy profiles of the tautomeric phenomena through strong lowering of the potential barriers to tautomerism. The comparison to [Zn2+-Im] subunits formed with Zn2+ and imidazole shows that the efficiency of Tz-based compounds for CO2 capture and uptake is due to the incorporation of more accessible nitrogen donor sites in Tzs compared to imidazoles. Since [Zn2+-Tz] clusters are subunits of an organometallic nanoporous materials and Zn-proteins, our data are useful for deriving force fields for macromolecular simulations of these materials. Our work also suggests the consideration of traces of water to better model the CO2 sequestration and reactivity on macromolecular entities such as pores or active sites.
Collapse
Affiliation(s)
- Rahma Dahmani
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS , 5 Bd Descartes , 77454 Marne-La-Vallée , France
| | - Sonja Grubišić
- Center for Chemistry, ICTM , University of Belgrade , Njegoševa 12 , P.O. Box 815, 11001 Belgrade , Serbia
| | | | | | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS , 5 Bd Descartes , 77454 Marne-La-Vallée , France
| |
Collapse
|
7
|
Insights into the bonding between tributylphosphine chalcogenides and zinc(II). Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|