1
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
2
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
4
|
Magnetic and Luminescence Properties of 8-Coordinated Pyridyl Adducts of Samarium(III) Complexes Containing 4,4,4-Trifluoro-1-(naphthalen-2-yl)-1,3-butanedionate. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8070072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel series of polypyridyl adducts, [Sm(ntfa)3(NN)] (2–4), with ntfa = 4,4,4-trifluoro-1-(naphthalen-2-yl)-1,3-butanedionate, NN = 2,2′-bipyridine (bipy), 4,4′-dimethyl-2,2′-bipyridine (4,4′-Me2bipy), and 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bipy) were synthesized from the precursor complex [Sm(ntfa)3(MeOH)2] (1) and the corresponding pyridyl ligands. Single X-ray crystallography showed that the complexes displayed 8-coordinated geometry. The solid pyridyl adducts 2–4 exhibited emission of luminescence in the NIR and visible regions with close quantum yields (QY = 0.20–0.25%). The magnetic data of 1–4 showed larger values than those expected for magnetically noncoupled Sm(III) complexes in the 6H5/2 ground state, with no saturation on the applied high magnetic field static at a temperature of 2 K.
Collapse
|
5
|
Tomal W, Szymaszek P, Bilut M, Popielarz R, Świergosz T, Ortyl J. meta-Terphenyls as versatile fluorescent molecular sensors for monitoring the progress of hybrid polymerization processes. Polym Chem 2022. [DOI: 10.1039/d2py00525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
meta-Terphenyl derivatives were used as versatile fluorescent sensors for online monitoring of hybrid photopolymerization that allow seeing the difference between different types of polymerization processes involved in the hybrid polymerization.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31 155 Kraków, Poland
| | - Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31 155 Kraków, Poland
| | - Magdalena Bilut
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31 155 Kraków, Poland
| | - Roman Popielarz
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31 155 Kraków, Poland
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31 155 Kraków, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31 155 Kraków, Poland
| |
Collapse
|
6
|
Hola E, Gruchała A, Popielarz R, Ortyl J. Non-destructive visual inspection of photocurable coatings based on fluorescent response of naked-eye visible colorimetric and fluorescent sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Petko F, Galek M, Hola E, Popielarz R, Ortyl J. One-Component Cationic Photoinitiators from Tunable Benzylidene Scaffolds for 3D Printing Applications. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Filip Petko
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Emilia Hola
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Roman Popielarz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
8
|
Difunctional 1H-quinolin-2-ones as spectroscopic fluorescent probes for real-time monitoring of photopolymerisation process and photosensitizers of fluorescent photopolymer resin in 3D printing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Photophysical, DFT and molecular docking studies of Sm(III) and Eu(III) complexes of newly synthesized coumarin ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Topa M, Ortyl J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4093. [PMID: 32942676 PMCID: PMC7560344 DOI: 10.3390/ma13184093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.
Collapse
Affiliation(s)
- Monika Topa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
11
|
Tomal W, Pilch M, Chachaj-Brekiesz A, Galek M, Morlet-Savary F, Graff B, Dietlin C, Lalevée J, Ortyl J. Photoinitiator-catalyst systems based on meta-terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polym Chem 2020. [DOI: 10.1039/d0py00597e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Application of new photoinitiator-catalyst systems based on meta-terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | - Maciej Pilch
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | | | | | - Fabrice Morlet-Savary
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Bernadette Graff
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Céline Dietlin
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Jacques Lalevée
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| |
Collapse
|
12
|
Applicability of 1,6-Diphenylquinolin-2-one Derivatives as Fluorescent Sensors for Monitoring the Progress of Photopolymerisation Processes and as Photosensitisers for Bimolecular Photoinitiating Systems. Polymers (Basel) 2019; 11:polym11111756. [PMID: 31731521 PMCID: PMC6918307 DOI: 10.3390/polym11111756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The applicability of new 1,6-diphenylquinolin-2-oneas derivatives as fluorescent molecular sensors for monitoring the progress of photopolymerisation processes by Fluorescence Probe Technique (FPT) has been tested. The progress of cationic, free-radical and thiol-ene photopolymerisation for commercially available monomers: triethylene glycol divinyl ether (TEGDVE), trimethylolpropane triacrylate (TMPTA) and trimethylpropane tris(3-mercaptopropropionate) (MERCAPTO) was monitored. It was found that new derivatives of 1,6-diphenylquinolin-2-one shifted their fluorescence spectra towards shorter wavelengths with the progress of polymerisation, which enabled monitoring the progress in terms of fluorescence intensity ratios as the progress indicator. Derivatives of 1,6-diphenylquinolin-2-one show sensitivity to changes in both polarity and viscosity in the surrounding microenvironment during photopolymerisation processes. Therefore, it was shown that they are good candidates to act as fluorescent sensors for monitoring the kinetics of very quick processes, such as photopolymerisation processes. Furthermore, the effect of the nature of substituents attached to the 1,6-diphenylquinolin-2-one ring on the characteristics of emission spectra was identified. Moreover, the sensitivity of fluorescent sensors was compared with commercially available model sensors, such as 7-diethylamino-4-methylcoumarin (Coumarin 1) and trans-2-(2',5'-dimethoxyphenyl)ethenyl-2,3,4,5,6-pentafluorobenzene (25ST). Moreover, it was also proven that selected derivatives of 1,6-diphenylquinolin-2-one exhibit an accelerating effect on the progress of cationic photopolymerisation of vinyl monomers (TEGDVE). Thus, the new 1,6-diphenylquinolin-2-one derivatives can be successfully used both as molecular fluorescence sensors to monitor the progress of photopolymerisation processes and as diaryliodonium salt photosensitisers to initiate cationic photopolymerisation processes in a UV-A range of 365 nm.
Collapse
|
13
|
Ortyl J, Topa M, Kamińska-Borek I, Popielarz R. Mechanism of interaction of aminocoumarins with reaction medium during cationic photopolymerization of triethylene glycol divinyl ether. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Ortyl J, Fiedor P, Chachaj-Brekiesz A, Pilch M, Hola E, Galek M. The Applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile Sensors for Monitoring Different Types of Photopolymerization Processes and Acceleration of Cationic and Free-Radical Photopolymerization Under Near UV Light. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1668. [PMID: 30965585 PMCID: PMC6480573 DOI: 10.3390/s19071668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
The performance of a series of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives as fluorescent molecular sensors for monitoring photopolymerization processes of different monomers by the Fluorescence Probe Technique (FPT) was studied. It has been shown that the new derivatives are characterized by much higher sensitivity than the commercially available 7-diethylamino-4-methylcoumarin (Coumarin 1) and trans-2-(2',5'-dimethoxyphenyl)ethenyl-2,3,4, 5,6-pentafluorobenzene (25ST) probes. It has been discovered that the 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives accelerate the cationic photopolymerization process initiated with diphenyliodonium photoinitiators at the wavelength where the photoinitiator alone does not work. They are particularly efficient for the photoinitiation of cationic photopolymerization of an epoxide and vinyl monomers. Consequently, the application of the 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives in a dual role: (a) as fluorescent sensors for monitoring the free-radical, thiol-ene and cationic polymerization progress, and (b) as long-wavelength co-initiators for diphenyliodonium salts initiators, is proposed.
Collapse
Affiliation(s)
- Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland.
| | - Paweł Fiedor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland.
| | - Maciej Pilch
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Emilia Hola
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland.
| |
Collapse
|