1
|
DeLuca M, Sensale S, Lin PA, Arya G. Prediction and Control in DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2024; 7:626-645. [PMID: 36880799 DOI: 10.1021/acsabm.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Lin Y, Wu X, Wang K, Shang S, Gong Y, Zhao H, Wu D, Zhang P, Lu X. Spectral Characteristics and Functional Responses of Phospholipid Bilayers in the Terahertz Band. Int J Mol Sci 2023; 24:ijms24087111. [PMID: 37108273 PMCID: PMC10138992 DOI: 10.3390/ijms24087111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the vibrational information encoded within the terahertz (THz) spectrum of biomolecules is critical for guiding the exploration of its functional responses to specific THz radiation wavelengths. This study investigated several important phospholipid components of biological membranes-distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylcholine (DPPC), sphingosine phosphorylcholine (SPH), and lecithin bilayer-using THz time-domain spectroscopy. We observed similar spectral patterns for DPPC, SPH, and the lecithin bilayer, all of which contain the choline group as the hydrophilic head. Notably, the spectrum of DSPE, which has an ethanolamine head group, was different. Interestingly, density functional theory calculations confirmed that the absorption peak common to DSPE and DPPC at approximately 3.0 THz originated from a collective vibration of their similar hydrophobic tails. Accordingly, the cell membrane fluidity of RAW264.7 macrophages with irradiation at 3.1 THz was significantly enhanced, leading to improved phagocytosis. Our results highlight the importance of the spectral characteristics of the phospholipid bilayers when studying their functional responses in the THz band and suggest that irradiation at 3.1 THz is a potential non-invasive strategy to increase the fluidity of phospholipid bilayers for biomedical applications such as immune activation or drug administration.
Collapse
Affiliation(s)
- Yanyun Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingjuan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaicheng Wang
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yubin Gong
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Peng Zhang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Qi X, Bertling K, Stark MS, Taimre T, Kao YC, Lim YL, Han S, O’Brien B, Collins A, Walsh M, Torniainen J, Gillespie T, Donose BC, Dean P, Li LH, Linfield EH, Davies AG, Indjin D, Soyer HP, Rakić AD. Terahertz imaging of human skin pathologies using laser feedback interferometry with quantum cascade lasers. BIOMEDICAL OPTICS EXPRESS 2023; 14:1393-1410. [PMID: 37078035 PMCID: PMC10110320 DOI: 10.1364/boe.480615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
Early detection of skin pathologies with current clinical diagnostic tools is challenging, particularly when there are no visible colour changes or morphological cues present on the skin. In this study, we present a terahertz (THz) imaging technology based on a narrow band quantum cascade laser (QCL) at 2.8 THz for human skin pathology detection with diffraction limited spatial resolution. THz imaging was conducted for three different groups of unstained human skin samples (benign naevus, dysplastic naevus, and melanoma) and compared to the corresponding traditional histopathologic stained images. The minimum thickness of dehydrated human skin that can provide THz contrast was determined to be 50 µm, which is approximately one half-wavelength of the THz wave used. The THz images from different types of 50 µm-thick skin samples were well correlated with the histological findings. The per-sample locations of pathology vs healthy skin can be separated from the density distribution of the corresponding pixels in the THz amplitude-phase map. The possible THz contrast mechanisms relating to the origin of image contrast in addition to water content were analyzed from these dehydrated samples. Our findings suggest that THz imaging could provide a feasible imaging modality for skin cancer detection that is beyond the visible.
Collapse
Affiliation(s)
- Xiaoqiong Qi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karl Bertling
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mitchell S. Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
| | - Thomas Taimre
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yung-Ching Kao
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
| | - Yah Leng Lim
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - She Han
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Blake O’Brien
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Angus Collins
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Michael Walsh
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Jari Torniainen
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy Gillespie
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bogdan C. Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Dean
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Lian He Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Edmund H. Linfield
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - A. Giles Davies
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Dragan Indjin
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aleksandar D. Rakić
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Liu F, Yuan Y, Zhang W, Fu Y, Yang M, Yang G, Liu H, Shen H, Li L. A highly sensitive and specific fluorescent strategy for the detection of Visfatin based on nonlinear hybridization chain reaction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Zhan X, Liu Y, Chen Z, Luo J, Yang S, Yang X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta 2023; 259:124483. [PMID: 37019007 DOI: 10.1016/j.talanta.2023.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Most tumors are easily missed and misdiagnosed due to the lack of specific clinical signs and symptoms in the early stage. Thus, an accurate, rapid and reliable early tumor detection method is highly desirable. The application of terahertz (THz) spectroscopy and imaging in biomedicine has made remarkable progress in the past two decades, which addresses the shortcomings of existing technologies and provides an alternative for early tumor diagnosis. Although issues such as size mismatch and strong absorption of THz waves by water have set hurdles for cancer diagnosis by THz technology, innovative materials and biosensors in recent years have led to possibilities for new THz biosensing and imaging methods. In this article, we reviewed the issues that need to be solved before THz technology is used for tumor-related biological sample detection and clinical auxiliary diagnosis. We focused on the recent research progress of THz technology, with an emphasis on biosensing and imaging. Finally, the application of THz spectroscopy and imaging for tumor diagnosis in clinical practice and the main challenges in this process were also mentioned. Collectively, THz-based spectroscopy and imaging reviewed here is envisioned as a cutting-edge approach for cancer diagnosis.
Collapse
Affiliation(s)
- Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Liu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400037, China
| | - Zhiguo Chen
- Gastroenterology Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jie Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Sha Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Wang F, Lin H, Tong J, Tai J, Wu J, Yao Y, Liu Y. Effects of Morphology and Solvent/Temperature on THz Spectra: Take Nucleosides as Example. Molecules 2023; 28:molecules28041528. [PMID: 36838517 PMCID: PMC9965851 DOI: 10.3390/molecules28041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Water molecules were easy to combine with organic molecules and embed into the lattice of solid molecules to form a hydrate. Compared with anhydrous compounds, a hydrate has completely different physical and chemical properties. In this paper, terahertz (THz) spectra of five nucleosides in the solid and liquid phases were studied experimentally by Fourier-transform infrared spectroscopy (FTIR) in the frequency of 0.5-9 THz. In addition, the lattice energy, geometric structure, and vibration spectrum of the molecular crystal of the nucleosides were analyzed theoretically by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). Furthermore, different nucleoside molecular morphology (monomer, polymer, and crystal), solvent (implicit and explicit water), and temperature/theoretical model effect on the THz spectra were mainly investigated. It was found that in the low-frequency band, the vibrational modes were generally originated from the collective vibration of all molecules involved (more than 99% of them were vibration; only less than 1% of them were rotation and translation), which can reflect the molecular structure and spatial distribution of different substances. The Gibbs free energy of thymidine monomer, dimer, tetramer, and crystal was studied. It was found that the cell-stacking energy had the greatest influence on the spectrum, indicating that only the crystal structure constrained by the periodic boundary conditions could well describe the experimental results. In addition, hydrophobic forces dominated the formation of new chemical bonds and strong inter-molecular interactions; the free water had little contribution to the THz spectrum of nucleosides, while crystalline water had a great influence on the spectrum.
Collapse
Affiliation(s)
- Fang Wang
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Haifeng Lin
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| | - Jiawen Tong
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Junbin Tai
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Jiaen Wu
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Yaru Yao
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Wang F, Nan Z, Sun X, Liu C, Zhuang Y, Zan J, Dai C, Liu Y. Characterization of degradation behaviors of PLA biodegradable plastics by infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121376. [PMID: 35660145 DOI: 10.1016/j.saa.2022.121376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the degradation behavior of two kinds of polylactic acid (PLA) biodegradable material products (pure PLA cup cover and modified PLA straw) was studied. It was found that under the composting environment specified in the International Standard, in the first 35 days, the degradation rate of the straw (with 50%-60% poly butylenes succinate (PBS)) was faster than that of the pure PLA cup cover, but in the later stage, the PLA cup cover exceeded the straw and disintegrated preferentially, and both could be degraded in about 70 days. After further analyzing the far-infrared (FIR, can also be called THz) and mid infrared (MIR) spectra of cup cover and straw, we observed that the material structure had not changed until disintegration, only the ester bond was hydrolyzed, the polymers became oligomers, which could be reflected in the change of the effective area of the characteristic peak at 7.15 THz (cup cover, labeled 1921) and 6.99 THz (straw, labeled 4386) in the THz spectrum. With the degradation, the effective area decreased continuously. Due to the strong absorption of the material in MIR band, most characteristic peaks were flattened and lost analytical value. The bivariate correlation of degradation time, biodegradation rate, total carbon dioxide release and the effective area of the characteristic peak at 7.15 THz (1921) and 6.99 THz (4386) in THz spectrum was analyzed by SPSS software. We discovered that the degradation time was significantly positively correlated with biodegradation rate and carbon dioxide release at the level of 0.01 and negatively correlated with the effective area of characteristic peak at the level of 0.05. The biodegradation rate was significantly negatively correlated with the effective area of characteristic peak at the level of 0.01. Taking the degradation time as the independent variable and the biodegradation rate, carbon dioxide release and effective area of characteristic peak as the dependent variables, we got that the THz spectrum could be used to describe the degradation behavior of PLA products as long as appropriate coefficient correction was made. In this way, we could separate from the laboratory environment, study the impact of environmental diversification on material degradation performance, and reduce the cost of material degradation performance identification. Using density functional theory (DFT), reduced density gradient (RDG) method and visualization software, the changes of weak interaction position and intensity in the molecule during the polymerization of lactic acid into PLA were further analyzed. We found that the vibration of ester bond corresponded to the characteristic peak with weak intensity in the spectrum, and the peak with large intensity mainly originated from the out-of-plane swing of O-H bond in the molecule.
Collapse
Affiliation(s)
- Fang Wang
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, People's Republic of China; College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhu Nan
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, People's Republic of China
| | - Xiaolin Sun
- School of Aeronautical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210046, People's Republic of China
| | - Chang Liu
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, People's Republic of China
| | - Yan Zhuang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, People's Republic of China
| | - Jianan Zan
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chunfa Dai
- CSIC Pacli (Nanjing) Technology Co., Ltd, Nanjing 210000, People's Republic of China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
8
|
Wang F, Sun X, Zan J, Li M, Liu Y, Chen J. Terahertz spectra and weak intermolecular interactions of nucleosides or nucleoside drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120344. [PMID: 34481145 DOI: 10.1016/j.saa.2021.120344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
In this paper, terahertz (THz) spectra of four DNA nucleosides (Adenosine, Thymidine, Cytidine and Guanosine) and two nucleoside derivatives (Ribavirin and Entecavir, first time reported) in the solid phase were studied experimentally by Fourier Transform Infrared Spectroscopy (FTIR) in the frequency of 1-10 THz. The lattice energy, geometric structure, vibration spectrum of them were analyzed theoretically by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF) and the density functional theory (DFT). The intra- and inter-molecular weak interactions corresponding to the vibrational modes of the crystal, polymer and monomer were obtained, with the help of the potential energy distribution (PED) and reduced density gradient (RDG) methods. It was found that the sum of electronic and thermal free energies increased from the monomer to polymer, and from the polymer to crystal. For example, the inter-molecular interaction energy from the monomer to dimer of adenosine increased 6.969 kcal/mol, and that from the dimer to crystal (the periodic boundary conditions were considered) increased 666.792 kcal/mol. Therefore, only the crystal structure constrained the periodic boundary conditions could well describe the experimental results, although the former scholars chose the monomer or polymer as the initial configuration due to the limitation of computing resources and methods. In THz band, the vibrational modes were generally originated from the collective vibration (more than 99% of them were vibration, only less than 1% of them were rotation and translation) of all molecules involved, which could reflect the molecular structure and spatial distribution of different substances. In order to accurately identify the spectra, we studied the location, type and contribution of all weak interactions, and found that the strong characteristic peaks corresponding to the strong hydrogen bonds came from inter-molecular, while the weak hydrogen bonds mainly originated from intra- and inter-molecular, the out-of-plane bending made the largest contribution, accounting for more than 90%. Furthermore, taking guanine, guanosine and two guanosine derivatives (Ribavirin and Entecavir) as examples, the differences of weak interaction among them caused by different molecular configuration, arrangement and substituent position were studied, and the fundamental reason of THz spectrum change was found. This research can lay a foundation for crystal engineering, supramolecular chemistry, molecular recognition and self-assembly, protein-ligand interaction, etc.
Collapse
Affiliation(s)
- Fang Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, People's Republic of China
| | - Xiaolin Sun
- School of Electronic and Information Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210046, People's Republic of China
| | - Jianan Zan
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Mingshi Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Jingyi Chen
- College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing 211171, People's Republic of China
| |
Collapse
|
9
|
Yang X, Li M, Peng Q, Huang J, Liu L, Li P, Shu C, Hu X, Fang J, Ye F, Zhu W. Label-free detection of living cervical cells based on microfluidic device with terahertz spectroscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100241. [PMID: 34704671 DOI: 10.1002/jbio.202100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Early diagnosis of cervical cancer is essential for a good prognosis. Terahertz wave detection technology is a nondestructive and label-free physical detection technology, which can detect and monitor the cancer cells in real time, especially for patients with deep or inaccessible tumors. In this study, a single-cell-layer microfluidic device was developed. After replacing the optical clearing agent, the characteristics of H8, HeLa and SiHa cell lines in adherent and suspended states were detected. Additionally, the absorption increased with increasing cell density. For the mixed suspension cell samples, principal component analysis-support vector machine method was used to identify benign and malignant cell component. After living cells formaldehyde, changes in cell membrane permeability were evaluated to identify the cell survival status (i.e., dead or living) based on terahertz spectroscopy amplitude differences. Therefore, extending the terahertz spectrum detection to the molecular level can characterize the life essence of cells and tissues.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qi Peng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Huang
- Department of Obstetrics and Gynecology, First Maternal and Infant Hospital of Tongji University, Shanghai, China
| | - Lifen Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chenggan Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xing Hu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Fang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fei Ye
- Department of Obstetrics and Gynecology, Jurong People's Hospital, Jurong, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Yan H, Fan W, Chen X, Liu L, Wang H, Jiang X. Terahertz signatures and quantitative analysis of glucose anhydrate and monohydrate mixture. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119825. [PMID: 33901947 DOI: 10.1016/j.saa.2021.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Glucose, as the main energy carrier and significant source of nutrition, generally comes in two available forms of anhydrate and monohydrate in commercial production. Considering their respective application occasions, proper identification of glucose in single composition or binary-mixture and quantification of the mixture are crucial in industry monitoring to guarantee merchandise quality. Simultaneously, public confusions of glucose are rather ubiquitous partly due to anhydrate and monohydrate with identical white crystalline appearance. In this paper, utilizing the molecular fingerprints of terahertz (THz) technology that are corresponding to structural characteristics of anhydrous and hydrated form, THz signatures of glucose anhydrate, monohydrate and their mixture, as well as THz spectral transformation from monohydrate to anhydrate with the dehydrating process are systematically studied. Some visible peaks of monohydrate were noted at 1.82 and 1.99 THz signifying the presence of hydrated structure. However, with the dehydrating process, the peaks related to the hydrated structure are not very apparent when the peaks at 1.44 and 2.08 THz appear due to changes in the molecular structure of anhydrate, which provide clear indication for hydrogen-bond network reconstruction at the micro level. Furthermore, characteristic peaks at 1.44 and 1.82 THz can be specified as the main quantitative indicators for quantitative detection. The linear relationships between the amplitudes of characteristic peaks and the percentage compositions of anhydrate and monohydrate are revealed. Three commercially available brands of edible glucose powder A, B, C were effectively identified by THz signatures. While powder C was recognized as binary-mixture and the proportion of anhydrate and monohydrate was further quantified. THz spectroscopy technology has advantages of direct recognition, simple quantitative model based on THz absorption peaks, and no need for complicated chemical treatment. It may be potentially shed light on industrial monitoring of glucose production and other related mixture in the future.
Collapse
Affiliation(s)
- Hui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China; Zhengzhou Key Laboratory of Low-dimensional Quantum Materials and Devices; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Fan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; University of Chinese Academy of Sciences, Beijing 100049, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.
| | - Xu Chen
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
| | - Lutao Liu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanqi Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Jiang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Kuznetsov SA, Popik VM, Peltek SE. Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. BIOMEDICAL OPTICS EXPRESS 2021; 12:705-721. [PMID: 33680537 PMCID: PMC7901329 DOI: 10.1364/boe.412074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
A fluorescent biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz (THz) radiation was developed via transformation of Escherichia coli (E. coli) cells with plasmid, in which the promotor of the tdcR gene controls the expression of yellow fluorescent protein TurboYFP. The biosensor was exposed to THz radiation in various vessels and nutrient media. The threshold and dynamics of fluorescence were found to depend on irradiation conditions. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensor is applicable to studying influence of THz radiation on the activity of tdcR promotor that is involved in the transport and metabolism of threonine and serine in E. coli.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department of Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Technological Design Institute of Applied Microelectronics — Novosibirsk Branch of Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Tachizaki T, Sakaguchi R, Terada S, Kamei KI, Hirori H. Terahertz pulse-altered gene networks in human induced pluripotent stem cells. OPTICS LETTERS 2020; 45:6078-6081. [PMID: 33137073 DOI: 10.1364/ol.402815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/22/2020] [Indexed: 05/20/2023]
Abstract
Terahertz (THz) irradiation has been exploited in biomedical applications involving non-invasive manipulation of living cells. We developed an apparatus for studying the effects of THz pulse irradiation on living human induced pluripotent stem cells. The THz pulse of the maximum electric field reached 0.5 MV/cm and was applied for one hour with 1 kHz repetition to the entire cell-culture area, a diameter of 1 mm. RNA sequencing of global gene-expression revealed that many THz-regulated genes were driven by zinc-finger transcription factors. Combined with a consideration of the interactions of metal ions and a THz electric field, these results imply that the local intracellular concentration of metal ions, such as Zn2+, was changed by the effective electrical force of our THz pulse.
Collapse
|
13
|
Wang F, Jiang L, Song J, Huang L, Ju Y, Liu Y. Sub-THz spectroscopic characterization identification for pine wood nematode ribosomal DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118152. [PMID: 32088532 DOI: 10.1016/j.saa.2020.118152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
This paper, we introduced Sub-terahertz (Sub-THz) technology to identify nematode DNA sequence. First, data mining technology and restriction enzyme digestion were used to cut out two corresponding sequences, each containing about 100 base pairs that could represent the characteristic fragments of Bursaphelenchus xylophilus (Bx) and Bursaphelenchus mucronatus (Bm) rDNA in internal transcribed spacer 1 (ITS1) region. Then, vibration spectra of the two enzyme-cut sequences were measured by Fourier transform infrared spectroscopy (FTIR). Meanwhile, the spectrum was analyzed by molecular dynamics method. It was found that the calculated and experimental spectra of the two enzyme-cut sequences were consistent, although the differences of the sequences could not be well reflected in the spectra. The vibration modes corresponding to diverse absorption peaks in the spectra were quite different, which were closely related to the internal bases sequencing. This can be used as an indicator for identifying Bx and Bm DNA. Moreover, the normal mode analysis (NMA) method was first adopted for spectral attribution analysis of DNA long sequences. Finally, the vibration spectra of shorter sequences predicted by second-order Markov chains and Monte Carlo method were studied. To some extent, the predicted short sequences can represent the complete sequence as the initial calculation structure.
Collapse
Affiliation(s)
- Fang Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China; School of Electronic and Information Engineering, Sanjiang University, Nanjing 210012, People's Republic of China
| | - Ling Jiang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jun Song
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yunwei Ju
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|