1
|
Musikavanhu B, Pan T, Ma Q, Liang Y, Xue Z, Feng L, Zhao L. Dual detection of Hg 2+ and Pb 2+ by a coumarin-functionalized Schiff base in environmental and biosystems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124101. [PMID: 38447440 DOI: 10.1016/j.saa.2024.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Fluorescent chemosensors are often preferred for tracking toxic ions because of their non-destructive measurement and ease of use in environmental real samples and biosystems. Exploring high selectivity, great sensitivity, and biocompatible fluorophores with facile, accessible and dual-responsive features is currently highly demanding. A coumarin-based naphthol hydrazone Schiff base chemosensor, NaChro, is designed and synthesized in a two-step process to detect toxic metal ions with strong emission. Fluorescence spectra analysis demonstrates that the probe binds to Hg2+ and Pb2+ ions with a 1:1 and a 2:1 stoichiometry, respectively, with high sensitivity, short response time and minimal interference from other metal ions. The observed reversible turn-on reaction was attributed to the inhibition of C = N isomerization and excited-state intramolecular proton transfer (ESIPT) processes once the ions were introduced. The practical applications of NaChro are successfully addressed in paper strips, various water samples, HeLa cells and Zebrafish, demonstrating that the probe can detect and track Hg2+ and Pb2+ ions in environmental samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Pan
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Sharma V, Savita S, Patra GK. A highly sensitive triazole-based perfectly water soluble novel bis-Schiff base reversible fluorescent-colorimetric chemosensor for fast detection of Pb 2+ ions. RSC Adv 2024; 14:3289-3303. [PMID: 38249676 PMCID: PMC10797601 DOI: 10.1039/d3ra06185j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
A reversible fluorescent-colorimetric azino bis-Schiff base receptor for the detection of Pb2+ in aqueous medium has been developed for the first time. Receptor L exhibits an excellent selective and rapid fluorescent-colorimetric response towards Pb2+. The sensitivity of the fluorescent-based assay (0.53 nM) and colorimetric assay (1.0 nM) for Pb2+ is sufficiently good in comparison to previously reported literature. From 1H NMR data, Job plot measurement and the ESI-MS spectrum, a 1 : 2 stoichiometric complexation between L and Pb2+ has been established. Receptor L shows a remarkable detection ability in a wide pH range of 4-8 and it has been successfully utilised in the determination of Pb2+ in aqueous solution of bovine serum albumin protein and in real samples. The geometry of L has been optimized by both DFT studies and NMR, FTIR and mass spectra. Moreover, we have studied molecular docking of the probe L.
Collapse
Affiliation(s)
- Vanshika Sharma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur C.G. India +91 7587312992
| | - Sandhya Savita
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur C.G. India +91 7587312992
| | - Goutam Kumar Patra
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur C.G. India +91 7587312992
| |
Collapse
|
3
|
Li S, Chang X, Kong X, Wang Q, Zhao F, Han J, Liu Y, Wang T. A visible BODIPY-based sensor for 'Naked-Eye' recognition of Ag + and its application on test paper strips. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123446. [PMID: 37748338 DOI: 10.1016/j.saa.2023.123446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
In this study, a novel, highly sensitive fluorescent sensor (E)-2-((2-(benzo[d] thiazol-2-yl) quinolin-8-yl) oxy)-N'-(4-(5, 5-difluoro-1, 3, 7, 9-tetramethyl-5H-4λ4, 5λ4-dipyrrolo [1, 2-c:2', 1'-f] [1, 3, 2] diazaborinin-10-yl) benzylidene) acetohydrazide (TQB) was developed for dual mode of Ag+ detection (colorimetric/fluorescence), and its structural and spectral properties were characterized by 1H NMR, ESI-MS, X-ray, ultraviolet and fluorescence photometry. It is found that TQB could specifically and efficiently identify Ag+ among many other metal ions in CH3OH/H2O (7:3 v/v, pH = 7.23) buffer. The maximum absorption wavelength of TQB is red-shifted while its fluorescence is quenched with a quenching rate of 88.7%. The energy difference between TQB and TQB-Ag+ complex was calculated by DFT, and the applicability of TQB was verified by paper strip test. In addition, TQB has been successfully applied to the determination of Ag+ in real water samples with good reversibility and recoveries.
Collapse
Affiliation(s)
- Shengling Li
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China.
| | - Xiliang Chang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Xiangpeng Kong
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Qi Wang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Feng Zhao
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Jia Han
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Tianyuan Wang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| |
Collapse
|
4
|
Ghorbanian M, Asghari S, Tajbakhsh M. A new benzothiazole azo dye colorimetric chemosensor for detecting Pb 2+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122652. [PMID: 36989695 DOI: 10.1016/j.saa.2023.122652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
In this work, a new benzothiazole azo dye sensor (BTS) was synthesized, and its cation binding affinity was studied using the colorimetric method, UV-vis, and 1H NMR spectral data. The results revealed that the sensor BTS exhibits a remarkable tendency for Pb2+ ion to perform spontaneous visual color change from blue (BTS) to pink (BTS + Pb2+), without any color change in the aqueous solutions of other cations such as Hg2+, Cu2+, Al3+, Ni2+, Cd2+, Ag+, Ba2+, K+, Co2+, Mg2+, Na+, Ca2+, Fe2+, and Fe3+ ions. The observed selectivity could be due to the formation of the complex (BTS + Pb2+), which led to a blue shift from 586 nm (BTS) to 514 nm (BTS + Pb2+) in the UV spectrum. The job's plot provided the stoichiometry ratio of the complex (BTS + Pb2+) to be 1:1. The limit of detection (LOD) of BTS for Pb2+ ion sensing was obtained at 0.67 µM. Additionally, the binding constant for BTS toward Pb 2+ ion was studied using the Benesi-Hildebrand equation. As a result of the BTS test paper strips investigations, it was found that the synthesized sensor BTS could be used as a rapid colorimetric chemosensor for the detection of the Pb2+ ions in the distilled, tap, and sea waters.
Collapse
Affiliation(s)
- Moein Ghorbanian
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran.
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran.
| |
Collapse
|
5
|
Hu W, Fan M, Zhang XF, Li M, Li G. Photophyical and photosensitizing properties of BODIPYs substantially changed by alkyl- and phenyl-amino groups on meso carbon. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122222. [PMID: 36508905 DOI: 10.1016/j.saa.2022.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
meso-RNH (R = C3H7, C4H9, PhCH2, H, and Ph) substituted BODIPY compounds have been prepared to examine their photophysical properties and photosensitizing abilities. We have measured the UV-vis absorption, steady state and time resolved fluorescence, excited triplet state formation using laser flash photolysis, singlet oxygen generation ability using chemical trapping method. The results show that the presence of meso-RNH leads to large blue shift of absorption and emission wavelength, remarkable decrease in fluorescence quantum yield and lifetime values, and significant increase in singlet oxygen formation quantum yield. Quantum chemical calculation also reveals the photoinduced charge transfer (PCT) mechanism. We conclude that property changes are due to: 1) S0 and S1 geometry, 2) ground state structural isomerization, and 3) intramolecular PCT. These results and mechanisms are helpful for designing new functional materials.
Collapse
Affiliation(s)
- Wenbin Hu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Mingyue Fan
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China; MPC Tech, MPC Technologies, Hamilton, ON L8S 3H4, Canada.
| | - Mengmeng Li
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Guoying Li
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| |
Collapse
|
6
|
Synthesis and Photophysics Characterization of Boronic Styril and Distyryl BODIPYs for Water-Based Dye-Sensitized Solar Cells. Biomimetics (Basel) 2022; 7:biomimetics7030110. [PMID: 35997430 PMCID: PMC9397057 DOI: 10.3390/biomimetics7030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, two boronic acid BODIPYs are obtained through a microwave-assisted Knoevenagel reaction. The aim is to use them for the first time as dyes in a photosensitized solar cell (DSSC) to mimic chlorophyll photosynthesis, harvesting solar light and converting it into electricity. The microwave-assisted Knoevenagel reaction is a straightforward approach to extending the molecular conjugation of the dye and is applied for the first time to synthesize BODIPY’s boronic acid derivatives. These derivatives have proved to be very useful for covalent deposition on titania. This work studies the photo-physical and electrochemical properties. Moreover, the photovoltaic performances of these two new dyes as sensitizers for DSSC are discussed. Experimental data show that both dyes exhibit photosensitizing activities in acetonitrile and water. In particular, in all the experiments, distyryl BODIPY was more efficient than styryl BODIPY. In this study, demonstrating the use of a natural component as a water-based electrolyte for boronic BODIPY sensitizers, we open new possibilities for the development of water-based solar cells.
Collapse
|
7
|
An N, Wang D, Zhao H, Gao Y. A spectroscopic probe for hypochlorous acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120529. [PMID: 34785148 DOI: 10.1016/j.saa.2021.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A spectroscopic probe CMBT was synthesized and characterized. CMBT showed the specific recognition for HClO based on the turn-on blue fluorescence and naked-eye change from pink to colorless. NMR, IR, HRMS-ESI, and spectral analysis suggested that colorimetric and fluorescent change of CMBT to HClO originated from the conversion of CMBT to starting material coumarin-aldehyde 1 caused by the oxidization of HClO, which was responsible for the fluorescence recovery. The detection limit was calculated to be 1.61 μM and 6.58 μM for fluorescence and UV-vis analysis with a range up to 1 mM. HClO's fluorescence detection was successfully achieved in tap and river water samples. The prepared convenient paper test strips showed a distinct color change in varying concentrations of HClO. A multi-input molecular logic circuit was constructed.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dan Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hui Zhao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunling Gao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
8
|
Xing C, Deng J, Fu W, Li J, Xu L, Sun R, Wang D, Li C, Liang K, Gao M, Kong B. Interfacially Super-Assembled Benzimidazole Derivative-Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells. Chemistry 2021; 28:e202103642. [PMID: 34878646 DOI: 10.1002/chem.202103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/01/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) functionalized with benzimidazole-derived fluorescent molecules (DHBM) are fabricated via a feasible interfacial superassembly strategy for the highly sensitive and selective detection of Cu2+ . DHBM-MSN exhibits an obvious quenching effect on Cu2+ in aqueous solutions, and the detection limit can be as low as 7.69×10-8 M. The DHBM-MSN solid-state sensor has good recyclability, and the silica framework can simultaneously improve the photostability of DHBM. Two mesoporous silica nanoparticles with different morphologies were specially designed to verify that nanocarriers with different morphologies do not affect the specific detectionability. The detection mechanism of the fluorescent probe was systematically elucidated by combining experimental results and density function theory calculations. Moreover, the detection system was successfully applied to detect Cu2+ in bovine serum, juice, and live cells. These results indicate that the DHBM-MSN fluorescent sensor holds great potential in practical and biomedical applications.
Collapse
Affiliation(s)
- Chenchen Xing
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jianlin Deng
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Wenlong Fu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jichao Li
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Lijie Xu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Ruihao Sun
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Dan Wang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Chengwen Li
- Dezhou deyao Pharmaceutical Limited Company, Dezhou, 253015, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Krishnan U, Iyer SK. A Pyrazolo Imine-based Colorimetric and Turn-on Fluorescent Sensor Probe for Determination of Hg 2+ Ion and its Application in Test Paper Strips. Photochem Photobiol 2021; 98:843-855. [PMID: 34634146 DOI: 10.1111/php.13538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
In this work, we synthesized diethylamino substituted pyrazolo imine (3) fluorescent probe for recognition of Hg2+ ion.The sensor probe 3 can detect Hg2+ by colorimetric method, and there is a 10-fold enhancement in fluorescence response. When the fluorescent probe bound with Hg2+ ion, turn-on fluorescence was observed via the coordination. Probe 3 has an excellent selectivity toward Hg2+ in the CH3 CN/H2 O (8:2, v/v) solution with low limit of detection and high binding association constant of 551 parts per billion (ppb) and 6.6067 × 106 m-1 for 3+Hg2+ , respectively. Furthermore, the formation of 3+Hg2+ complex with 1:1 binding mode was evidenced by Job's plot, 1 H NMR spectroscopy and Mass analysis. In addition, probe 3 is a feasible option to detect Hg2+ in various sources of water samples. Bio-imaging experiments have demonstrated that probe 3 can be used to monitor Hg2+ in Escherichia coli bacterial cell. The sensor 3 was also used for paper strip application to detect Hg2+ ion.
Collapse
Affiliation(s)
- Uma Krishnan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
10
|
So H, Park S, Kim C. Construction of a Quinoline‐based Sequential Functioning Chromogenic Sensor for Copper(
II
) Ion and Biothiols: Its Application to Test Strips. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Haeri So
- Department of Fine Chemicals Seoul National University of Science and Technology (SNUT) Seoul 01178 Korea
| | - Soyoung Park
- Department of Fine Chemicals Seoul National University of Science and Technology (SNUT) Seoul 01178 Korea
| | - Cheal Kim
- Department of Fine Chemicals Seoul National University of Science and Technology (SNUT) Seoul 01178 Korea
| |
Collapse
|
11
|
Trevino K, Tautges BK, Kapre R, Franco Jr FC, Or VW, Balmond EI, Shaw JT, Garcia J, Louie AY. Highly Sensitive and Selective Spiropyran-Based Sensor for Copper(II) Quantification. ACS OMEGA 2021; 6:10776-10789. [PMID: 34056232 PMCID: PMC8153370 DOI: 10.1021/acsomega.1c00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/02/2021] [Indexed: 05/03/2023]
Abstract
The metal-binding capabilities of the spiropyran family of molecular switches have been explored for several purposes from sensing to optical circuits. Metal-selective sensing has been of great interest for applications ranging from environmental assays to industrial quality control, but sensitive metal detection for field-based assays has been elusive. In this work, we demonstrate colorimetric copper sensing at low micromolar levels. Dimethylamine-functionalized spiropyran (SP1) was synthesized and its metal-sensing properties were investigated using UV-vis spectrophotometry. The formation of a metal complex between SP1 and Cu2+ was associated with a color change that can be observed by the naked eye as low as ≈6 μM and the limit of detection was found to be 0.11 μM via UV-vis spectrometry. Colorimetric data showed linearity of response in a physiologically relevant range (0-20 μM Cu2+) with high selectivity for Cu2+ ions over biologically and environmentally relevant metals such as Na+, K+, Mn2+, Ca2+, Zn2+, Co2+, Mg2+, Ni2+, Fe3+, Cd2+, and Pb2+. Since the color change accompanying SP1-Cu2+ complex formation could be detected at low micromolar concentrations, SP1 could be viable for field testing of trace Cu2+ ions.
Collapse
Affiliation(s)
- Kimberly
M. Trevino
- Chemistry
Graduate Group, University of California
at Davis, One Shields Ave, Davis, California 95616, United States
| | - Brandon K. Tautges
- Chemistry
Graduate Group, University of California
at Davis, One Shields Ave, Davis, California 95616, United States
| | - Rohan Kapre
- Department
of Biomedical Engineering, University of
California at Davis, One Shields Ave, Davis, California, 95616, United States
| | - Francisco C. Franco Jr
- Chemistry
Department, De La Salle University, 2401 Taft Avenue, 1004 Manila, Philippines
| | - Victor W. Or
- Department
of Biomedical Engineering, University of
California at Davis, One Shields Ave, Davis, California, 95616, United States
| | - Edward I. Balmond
- Chemistry
Graduate Group, University of California
at Davis, One Shields Ave, Davis, California 95616, United States
| | - Jared T. Shaw
- Chemistry
Graduate Group, University of California
at Davis, One Shields Ave, Davis, California 95616, United States
| | - Joel Garcia
- Department
of Biomedical Engineering, University of
California at Davis, One Shields Ave, Davis, California, 95616, United States
- Chemistry
Department, De La Salle University, 2401 Taft Avenue, 1004 Manila, Philippines
| | - Angelique Y. Louie
- Chemistry
Graduate Group, University of California
at Davis, One Shields Ave, Davis, California 95616, United States
- Department
of Biomedical Engineering, University of
California at Davis, One Shields Ave, Davis, California, 95616, United States
| |
Collapse
|
12
|
So H, Lee H, Kim C. A Heterocyclic-based Bifunctional Sensor for Detecting Cobalt and Zinc Ion. ANAL SCI 2020; 36:1535-1539. [PMID: 32863332 DOI: 10.2116/analsci.20p197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/18/2020] [Indexed: 08/09/2023]
Abstract
A new bifunctional chemosensor HBP ((E)-2-(2-((5-bromopyridin-2-yl)methylene)hydrazinyl) quinoline) based on heterocyclic compounds was designed and studied. The HBP showed successful detecting ability toward cobalt ion with a UV-visible red-shift and a color change of colorless to pink. Moreover, toward zinc ion, the HBP showed an obvious fluorescence turn-on response. The binding ratio of the HBP to cobalt and zinc was a 2 to 1 for both ions. The detection limits were found to be 10 nM for Co2+ and 18 nM for Zn2+. Based on UV-vis and fluorescent spectral variations, Job plots, ESI-MS, FT-IR and calculations, the binding mechanisms of the HBP toward cobalt and zinc ions were proposed.
Collapse
Affiliation(s)
- Haeri So
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01178, Korea
| | - Hangyul Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01178, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01178, Korea.
| |
Collapse
|
13
|
Zhu Z, Ding H, Wang Y, Fan C, Tu Y, Liu G, Pu S. A ratiometric and colorimetric fluorescent probe for the detection of mercury ion based on rhodamine and quinoline–benzothiazole conjugated dyad. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Hu Z, Yang T, Liu J, Zhang Z, Feng G. Preparation and application of a highly sensitive conjugated polymer-copper (Ⅱ) composite fluorescent sensor for detecting hydrazine in aqueous solution. Talanta 2020; 207:120203. [DOI: 10.1016/j.talanta.2019.120203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
|
15
|
Xu T, Huang J, Fang M, Sui M, Zhu Y, Shentu Y, Li C, Zhu W. A novel “turn-on” fluorescent probe based on naphthalimide for the tracking of lysosomal Cu2+ in living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj04416d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysosome-targeted probe CuNI exhibits highly effective fluorescence detection ability for Cu2+ in aqueous solution and cells. The fluorescent enhancement is due to the Cu2+-catalyzed hydrolysis of CuNI and the AIE effect of the hydrolysate MFNI.
Collapse
Affiliation(s)
- Tingting Xu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Junjie Huang
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University
- Hefei 230601
| | - Mingshuai Sui
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Yujing Zhu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Yupeng Shentu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Cun Li
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University
- Hefei 230601
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University
- Hefei 230601
| |
Collapse
|
16
|
Chen CG, Vijay N, Thirumalaivasan N, Velmathi S, Wu SP. Coumarin-based Hg 2+ fluorescent probe: Fluorescence turn-on detection for Hg 2+ bioimaging in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:135-140. [PMID: 31030041 DOI: 10.1016/j.saa.2019.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The need in developing fluorescent probes for trace metal ion detection in biological samples has been an important issue. Herein, a reaction-based fluorescent probe PIC containing a perimidine moiety was designed and synthesized for Hg2+ detection. The probe can selectively distinguish Hg2+ with 42-fold fluorescent enhancement from the other metal ions at physiological pH. This probe can detect Hg2+ with the detection limit of 1.08 μM. The sensor PIC can be applied to real-time detection of Hg2+ in cells with blue emission.
Collapse
Affiliation(s)
- Chong-Guang Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | | | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
17
|
Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence sensing, of d-block elements such as Cu2+, Fe3+, Fe2+, Cd2+, Hg2+, and Zn2+ has significantly increased since the beginning of the 21st century. These particular metal ions play essential roles in biological, industrial, and environmental applications, therefore, there has been a drive to measure, detect, and remediate these metal ions. We have chosen to highlight the low molecular weight fluorescent probes (LMFPs) that undergo an optical response upon coordination with the group 12 triad (Zn2+, Cd2+, and Hg2+), as these metals have similar chemical characteristics but behave differently in the environment.
Collapse
|
18
|
A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK. Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 2019; 9:25919-25931. [PMID: 35530070 PMCID: PMC9070313 DOI: 10.1039/c9ra03341f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022] Open
Abstract
A triazole-based novel bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized by elemental analysis, 1H-NMR, ESI-MS, FTIR spectra and DFT studies. The receptor L showed selective and sensitive colorimetric sensing ability for Cu2+ and Pb2+ ions by changing color from colorless to yellow and light yellow respectively in CH3OH–tris-buffer (1 : 1, v/v). However, it displayed strong fluorescence enhancement upon the addition of both Cu2+ and Pb2+ ions, attributed to the blocking of PET. The fluorometric detection limits for Cu2+ and Pb2+ were found to be 12 × 10−7 M and 9 × 10−7 M and the colorimetric detection limits were 3.7 × 10−6 M and 1.2 × 10−6 M respectively; which are far below the permissible concentration in drinking water determined by WHO. Moreover, it was found that chemosensor L worked as a reversible fluorescence probe towards Cu2+ and Pb2+ ions by the accumulation of S2− and EDTA respectively. Based on the physicochemical and analytical methods like ESI-mass spectrometry, Job plot, FT-IR, 1H-NMR spectra and DFT studies the detection mechanism may be explained as metal coordination, photoinduced electron transfer (PET) as well as an internal charge transfer (ICT) process. The sensor could work in a pH span of 4.0–12.0. The chemosensor L shows its application potential in the detection of Cu2+ and Pb2+ in real samples, living cells and building of molecular logic gate. A novel triazole-based bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized. The chemo-sensor L shows its application potential in the detection of Cu2+ and Pb2+ in living cells and building molecular logic gate.![]()
Collapse
Affiliation(s)
- Kalyani Rout
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Amit Kumar Manna
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Meman Sahu
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Jahangir Mondal
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Sunil K. Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Goutam K. Patra
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| |
Collapse
|
20
|
Sun W, Chen R, Cheng X, Marin L. Bodipy-based chemosensors for highly sensitive and selective detection of Hg2+ ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj04817g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Small molecular chemo-sensors with strong fluorescence were designed and synthesized. Then, corresponding macromolecular sensors were synthesized by introducing the as-prepared small molecular sensors. The macromolecular chemo-sensors not only retained their sensing ability, but also enhanced the sensing ability dramatically.
Collapse
Affiliation(s)
- Wei Sun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
- Wuhan
- China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
- Wuhan
- China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
- Wuhan
- China
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi
- Romania
| |
Collapse
|
21
|
Jiang Y, Chen X, Lan L, Pan Y, Zhu G, Miao P. Gly–Gly–His tripeptide- and silver nanoparticle-assisted electrochemical evaluation of copper(ii) ions in aqueous environment. NEW J CHEM 2018. [DOI: 10.1039/c8nj03625j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive and selective electrochemical sensor for Cu2+ assay is developed using tripeptide-based recognition and silver nanoparticle-modified electrode.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Orthopedics
- Nanjing Medical University Affiliated Wuxi Second Hospital
- Wuxi 214000
- P. R. China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- Tianjin Guoke Jiaye Medical Technology Development Co., LTD
| | - Lintao Lan
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Guoxing Zhu
- Department of Orthopedics
- Nanjing Medical University Affiliated Wuxi Second Hospital
- Wuxi 214000
- P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| |
Collapse
|