Mohan B, Xing T, Kumar S, Kumar S, Ma S, Sun F, Xing D, Ren P. A chemosensing approach for the colorimetric and spectroscopic detection of Cr
3+, Cu
2+, Fe
3+, and Gd
3+ metal ions.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;
845:157242. [PMID:
35820525 DOI:
10.1016/j.scitotenv.2022.157242]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal cations are present in domestic and industrial wastewater and have adverse effects on human and aqueous life. The present study describes the development of the molecular probe 9-anthracen-9-ylmethylene)hydrazineylidene)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (AMHMPQ) to detect Cr3+, Cu2+, Fe3+, and Gd3+ ions by using UV-visible, fluorescence, colorimetric and excitation-emission matrix (EEM) spectroscopy techniques. The interaction of Cr3+, Cu2+, Fe3+, and Gd3+ can be observed by the absorption maxima shift, turn-off, colour changes, and EEM shifts. In addition, fluorescence limits of detection 17.66 × 10-6 M, 6.44 × 10-9 M, 28.87 × 10-8 M, and 12.49 × 10-6 M in wide linear ranges, low limits of quantifications, high values of Stern-Volmer constant, Job's plot and Benesi-Hildebrand plot justify the 1:1 association affinity with association constants of 1.46 × 104 M-1, 1.86 × 107 M-1, 2.69 × 105 M-1, 2.13 × 104 M-1 for AMHMPQ-metal ions (Cr3+, Cu2+, Fe3+, and Gd3+ ions), respectively. Paper- and mask-based kits are developed to explore the utility of the designed chemosensor. Additionally, AMHMPQ acts as a reusable sensor for two, seven, two, and zero cycles for Cr3+, Cu2+, Fe3+, and Gd3+ ions, respectively, when checked with EDTA.
Collapse