1
|
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052749. [PMID: 36904948 PMCID: PMC10007638 DOI: 10.3390/s23052749] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
Colorimetric sensors have been widely used to detect numerous analytes due to their cost-effectiveness, high sensitivity and specificity, and clear visibility, even with the naked eye. In recent years, the emergence of advanced nanomaterials has greatly improved the development of colorimetric sensors. This review focuses on the recent (from the years 2015 to 2022) advances in the design, fabrication, and applications of colorimetric sensors. First, the classification and sensing mechanisms of colorimetric sensors are briefly described, and the design of colorimetric sensors based on several typical nanomaterials, including graphene and its derivatives, metal and metal oxide nanoparticles, DNA nanomaterials, quantum dots, and some other materials are discussed. Then the applications, especially for the detection of metallic and non-metallic ions, proteins, small molecules, gas, virus and bacteria, and DNA/RNA are summarized. Finally, the remaining challenges and future trends in the development of colorimetric sensors are also discussed.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Huan-Huan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
New stilbene-biscarbothioamide based colorimetric chemosensor and turn on fluorescent probe for recognition of Hg2+ cation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
Demircioğlu T, Kaplan M, Tezgin E, Kaan Koç Ö, Durmazel S, Üzer A, Apak R. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Thipwimonmas Y, Thiangchanya A, Phonchai A, Thainchaiwattana S, Jomsati W, Jomsati S, Tayayuth K, Limbut W. The Development of Digital Image Colorimetric Quantitative Analysis of Multi-Explosives Using Polymer Gel Sensors. SENSORS 2021; 21:s21238041. [PMID: 34884043 PMCID: PMC8659919 DOI: 10.3390/s21238041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022]
Abstract
Polymer gel sensors on 96-well plates were successfully used to detect four different multi-explosives, including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrite, and perchlorate. The products of reactions between the explosives and the polymer gel sensors were digitally captured, and the images were analyzed by a developed Red–Green–Blue (RGB) analyzer program on a notebook computer. RGB color analysis provided the basic color data of the reaction products for the quantification of the explosives. The results provided good linear range, sensitivity, limit of detection, limit of quantitation, specificity, interference tolerance, and recovery. The method demonstrated great potential to detect explosives by colorimetric analysis of digital images of samples on 96-well plates. It is possible to apply the proposed method for quantitative on-site field screening of multi-explosives.
Collapse
Affiliation(s)
- Yudtapum Thipwimonmas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Adul Thiangchanya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sittipoom Thainchaiwattana
- Police Forensic Science Center 9, M.1, Chalung, Hat Yai, Songkhla 90110, Thailand; (S.T.); (W.J.); (S.J.)
| | - Wachirawit Jomsati
- Police Forensic Science Center 9, M.1, Chalung, Hat Yai, Songkhla 90110, Thailand; (S.T.); (W.J.); (S.J.)
| | - Sunisa Jomsati
- Police Forensic Science Center 9, M.1, Chalung, Hat Yai, Songkhla 90110, Thailand; (S.T.); (W.J.); (S.J.)
| | - Kunanunt Tayayuth
- Science Park, Hat Yai Campus of Extension Southern Institute of Science Park, Prince of Songkla University, Moo 6, Hat Yai, Songkhla 90110, Thailand;
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288563
| |
Collapse
|
5
|
Kishnani V, Park S, Nakate UT, Mondal K, Gupta A. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review. Biomed Microdevices 2021; 24:2. [PMID: 34792679 PMCID: PMC8600500 DOI: 10.1007/s10544-021-00588-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/04/2022]
Abstract
Over the last few years, the microfluidics phenomenon coupled with the Internet of Things (IoT) using innovative nano-functional materials has been recognized as a sustainable and economical tool for point-of-care testing (POCT) of various pathogens influencing human health. The sensors based on these phenomena aim to be designed for cost-effectiveness, make it handy, environment-friendly, and get an accurate, easy, and rapid response. Considering the burgeoning importance of analytical devices in the healthcare domain, this review paper is based on the gist of sensing aspects of the microfabricated paper-based analytical devices (μPADs). The article discusses the various used design methodologies and fabrication approaches and elucidates the recently reported surface modification strategies, detection mechanisms viz., colorimetric, electrochemical, fluorescence, electrochemiluminescence, etc. In a nutshell, this article summarizes the state-of-the-art research work carried out over the nano functionalized paper-based analytical devices and associated challenges/solutions in the point of care testing domain.
Collapse
Affiliation(s)
- Vinay Kishnani
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India
| | - Sungjune Park
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Umesh T Nakate
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India.
| |
Collapse
|
6
|
Thanomsak S, Insombat C, Chaiyo P, Tuntulani T, Janrungroatsakul W. Fabrication of a paper-based sensor from graphene quantum dots coated with a polymeric membrane for the determination of gold(III) ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4785-4792. [PMID: 34581322 DOI: 10.1039/d1ay01258d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel paper-based sensor using graphene quantum dots (GQDs) as a colorimetric probe for Au3+ determination has been developed. The paper sensor was fabricated by the adsorption of GQDs onto cellulose filter paper and then coating with a PVC membrane. The PVC membrane was plasticized with o-NPOE containing potassium tetrakis(4-chlorophenyl)borate (KTpClPB) as a lipophilic cation-exchanger. According to the ion-exchanged mechanism between the lipophilic phase and aqueous phase, Au3+ in the aqueous solution was extracted to the lipophilic phase on the paper layer. Then, adsorbed GQDs on the paper could selectively reduce Au3+ to elemental gold (Au0). The generated gold nanoparticles (AuNPs) resulted in the color of the paper turning from pale yellow to pink, which was recorded by using CIE L*a*b* color space. Under optimized conditions, the change in the color difference (ΔE) was related to the concentration of Au3+ in a working linear range of 200-1000 μM and the detection limit was found to be 70 μM. The proposed sensor was successfully applied to the determination of Au3+ in real water samples. The results were in favorable agreement with standard inductively coupled plasma-optical emission spectrometry (ICP-OES) results.
Collapse
Affiliation(s)
- Suphakan Thanomsak
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Chanunporn Insombat
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Phutita Chaiyo
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
7
|
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021; 12:728250. [PMID: 34659351 PMCID: PMC8511513 DOI: 10.3389/fgene.2021.728250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid advancement of nanotechnology enhances the production of different nanoparticles that meet the demand of various fields like biomedical sciences, industrial, material sciences and biotechnology, etc. This technological development increases the chances of nanoparticles exposure to human beings, which can threaten their health. It is well known that various cellular processes (transcription, translation, and replication during cell proliferation, cell cycle, cell differentiation) in which genetic materials (DNA and RNA) are involved play a vital role to maintain any structural and functional modification into it. When nanoparticles come into the vicinity of the cellular system, chances of uptake become high due to their small size. This cellular uptake of nanoparticles enhances its interaction with DNA, leading to structural and functional modification (DNA damage/repair, DNA methylation) into the DNA. These modifications exhibit adverse effects on the cellular system, consequently showing its inadvertent effect on human health. Therefore, in the present study, an attempt has been made to elucidate the genotoxic mechanism of nanoparticles in the context of structural and functional modifications of DNA.
Collapse
Affiliation(s)
- Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| | - Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| |
Collapse
|
8
|
Adegoke O, Daeid NN. Polymeric-coated Fe-doped ceria/gold hybrid nanocomposite as an aptasensor for the catalytic enhanced colorimetric detection of 2,4-dinitrophenol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg Top Life Sci 2021; 5:367-379. [PMID: 33960382 DOI: 10.1042/etls20200281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Warfare threats and acts of terror are challenging situations encountered by defense agencies across the globe and are of growing concern to the general public, and security-minded policy makers. Detecting ultra-low quantities of explosive compounds in remote locations or under harsh conditions for anti-terror purposes as well as the environmental monitoring of residual or discarded explosives in soil, remains a major challenge. The use of metal nanoparticles (NPs) for trace explosive detection has drawn considerable interest in recent years. For nano-based explosive sensor devices to meet real-life operational demands, analytical parameters such as, long-shelf life, stability under harsh conditions, ease-of-use, high sensitivity, excellent selectivity, and rapid signal response must be met. Generally, the analytical performance of colorimetric-based nanosensor systems is strongly dependent on the surface properties of the nanomaterial used in the colorimetric assay. The size and shape properties of metal NPs, surface functionalisation efficiency, and assay fabrication methods, are factors that influence the efficacy of colorimetric explosive nanosensor systems. This review reports on the design and analytical performances of colorimetric explosive sensor systems using metal NPs as optical signal transducers. The challenges of trace explosive detection, advances in metal NP colorimetric explosive design, limitations of each methods, and possible strategies to mitigate the problems are discussed.
Collapse
|
10
|
Zou X, Ji Y, Li H, Wang Z, Shi L, Zhang S, Wang T, Gong Z. Recent advances of environmental pollutants detection via paper-based sensing strategy. LUMINESCENCE 2021; 36:1818-1836. [PMID: 34342392 DOI: 10.1002/bio.4130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Paper has become one of the most promising substrates for building low-cost and powerful sensing platforms due to its self-pumping ability and compatibility with multiple patterning methods. Paper-based sensors have been greatly developed in the field of environmental monitoring. In this review, we introduced the research and application of paper-based sensors in environmental monitoring, focusing on the deposition and patterning methods of building paper-based sensors, and summarized the applications of detecting environmental pollutants, including metal ions, anions, explosives, neurotoxins, volatile organic compounds, and small molecules. In addition, the development prospects and challenges of promoting paper-based sensors are also discussed. The current review will provide references for the construction of portable paper-based sensors, and has implications for the field of on-site real-time detection of the environment.
Collapse
Affiliation(s)
- Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yayun Ji
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hangzhou Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhaoli Wang
- Chengdu Academy of Environmental Sciences, Chengdu, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shengli Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Souri Z, Adeli M, Mehdipour E, Yari A, Shams A, Beyranvand S, Sattari S. Covalent Decoration of MoS 2 Platforms by Silver Nanoparticles through the Reversible Addition-Fragmentation Chain Transfer Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3382-3390. [PMID: 33691410 DOI: 10.1021/acs.langmuir.0c03518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional nanomaterials decorated by metal nanoparticles have gained great interest, due to their potential applications in different areas ranging from electrochemical sensing to photothermal therapy. However, metal nanoparticles that are noncovalently immobilized on the surface of two-dimensional nanomaterials can be dissociated from their surface in the complex mediums. This challenge can be overcome by covalent attachment of nanoparticles to the surface of these platforms. In this work, MoS2 sheets are decorated by silver nanoparticles (AgNPs) through a reversible addition-fragmentation chain transfer (RAFT) reaction. Reactive centers were created on the surface of freshly exfoliated MoS2 and a two-dimensional platform with the ability of initiating the RAFT reaction was obtained. Afterwards, silver nanoparticles with acrylamide functionality were synthesized and attached on the surface of MoS2 sheets by the RAFT reaction. MoS2-AgNPs hybrids were characterized by different spectroscopy and microscopy methods as well as thermal and elemental analyses, and then they were used for the electrochemical determination of dipyridamole in aqueous solution. Taking advantage of the straightforward synthesis and the possible MoS2-AgNPs distance adjustment, a variety of hybrid systems with unique physicochemical and optoelectronic properties can be constructed by using this method.
Collapse
Affiliation(s)
- Zeinab Souri
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Mohsen Adeli
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Ebrahim Mehdipour
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Abdolah Yari
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Azim Shams
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Siamak Beyranvand
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Shabnam Sattari
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| |
Collapse
|
12
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
To KC, Ben-Jaber S, Parkin IP. Recent Developments in the Field of Explosive Trace Detection. ACS NANO 2020; 14:10804-10833. [PMID: 32790331 DOI: 10.1021/acsnano.0c01579] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Explosive trace detection (ETD) technologies play a vital role in maintaining national security. ETD remains an active research area with many analytical techniques in operational use. This review details the latest advances in animal olfactory, ion mobility spectrometry (IMS), and Raman and colorimetric detection methods. Developments in optical, biological, electrochemical, mass, and thermal sensors are also covered in addition to the use of nanomaterials technology. Commercially available systems are presented as examples of current detection capabilities and as benchmarks for improvement. Attention is also drawn to recent collaborative projects involving government, academia, and industry to highlight the emergence of multimodal screening approaches and applications. The objective of the review is to provide a comprehensive overview of ETD by highlighting challenges in ETD and providing an understanding of the principles, advantages, and limitations of each technology and relating this to current systems.
Collapse
Affiliation(s)
- Ka Chuen To
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Sultan Ben-Jaber
- Department of Science and Forensics, King Fahad Security College, Riyadh 13232, Saudi Arabia
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| |
Collapse
|
14
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
15
|
Sahu S, Sharma S, Ghosh KK. Novel formation of Au/Ag bimetallic nanoparticles from a mixture of monometallic nanoparticles and their application for the rapid detection of lead in onion samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj02994g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Characterization of gold, silver and gold/silver bimetallic nanoparticles for colorimetric detection of lead in onion samples.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur 492010
- India
| | - Srishti Sharma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur 492010
- India
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur 492010
- India
| |
Collapse
|