1
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
2
|
Xi L, Zhang X, Chen Y, Peng J, Liu M, Huo D, Li G, He H. A fluorescence turn-on strategy to achieve detection of captopril based on Ag nanoclusters. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Zheng Y, Zhou Y, Cui X, Yan H, Cao L, Gao L, Yin H. Investigation of the effect of antibiotics on 5-formylcytosine content in mazie seedling tissues based on photoelectrochemical biosensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129146. [PMID: 35594676 DOI: 10.1016/j.jhazmat.2022.129146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Given the improved photoactivity of Bi2S3 by MXene, an article photoelectrochemical biosensor was designed for 5-formyl-2'-deoxycytidine (5fdCTP) detection, where Bi2S3: MXene was selected as photoactive material, polydopamine was used as solid electron donor and 5fdCTP capture reagent, calcined ZIF-8(C-ZIF-8) was chosen as the artificial enzyme. With the catalyzed by C-ZIF-8, 4-chloro-1-naphthol was allegro oxidized by H2O2 to form the insoluble benzo-4-chlorohexadienone, and then deposited on the surface of the electrode, Resulting in a decrease of the PEC response. Under the optimum conditions, the sensor has a linear range of 0.001-200 nM and a detection limit of 0.51 pM (3σ). The suitability of the developed method was appraised by investigating the effect of antibiotics on 5fdCTP content in the genomic DNA of the roots of maize seedlings. As a new detection platform, the application of this approach can be expanded to investigative the impact of other pollutants on the content of 5fdCTP in plant or animal tissues, explore the feasibility of 5fdCTP as a new indicator for the ecotoxicological effect of pollutants, and the photoelectrochemical method as a new assessment technique for the ecotoxicological effects of pollutants.
Collapse
Affiliation(s)
- Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China.
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Hengming Yan
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Hu Y, Li Y, Liao Y, Jiang X, Cheng Z. Poly(sodium-p-styrenesulfonate)-enhanced fluorescent silver nanoclusters for the assay of two food flavors and silicic acid. Food Chem 2020; 318:126502. [PMID: 32146311 DOI: 10.1016/j.foodchem.2020.126502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/06/2023]
Abstract
A water-soluble, long-term stable, poly(sodium-p-styrenesulfonate)-enhanced and d-penicillamine stabilized argentum nanoclusters (PSS-DPA-AgNCs) was synthesized by a one-step ultraviolet radiation combined with microwave heating method. The effects of different types of polyelectrolytes and energy suppliers on the AgNCs photo-luminescence performance were investigated in detail. The prepared AgNCs are exhibited to be viable fluorescent method for 2-Mercapto-3-butanol (2-M-3-B), 3-Mercapto-2-butanone (3-M-2-B) and silicate (SiO32-) determinations. The fluorescence (FL) of PSS-DPA-AgNCs is quenched with the addition of 2-M-3-B/3-M-2-B/SiO32- mainly originating from a static quenching process. The method can monitor 2-M-3-B/3-M-2-B by fluorometry with a linear response in the range of 0.33-90.0/0.33-80.0 μM and a 74/250 nM detection limit (at 3σ/slope). For the SiO32- assay, corresponding data are 3.33-100.0 μM and 278 nM. Moreover, the proposed method was successfully used for the assays of two food flavors in the steamed bread and soda drinks, and silicate in the mineral water samples respectively.
Collapse
Affiliation(s)
- Yue Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yingping Li
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
5
|
Hu Y, Jia Y, Liao Y, Jiang X, Cheng Z. Fluorometric assay of iron(II) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117519. [PMID: 31521986 DOI: 10.1016/j.saa.2019.117519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Poly(sodium-p-styrenesulfonate)-enhanced and D-penicillamine stabilized Ag nanoclusters (PSS-DPA-AgNCs) were prepared using one-step ultraviolet irradiation combined with microwave heating method, and the effects of the AgNCs photo-luminescence performance based on different types of polyelectrolytes and energy suppliers were studied detailedly. The as-prepared AgNCs can be used as a viable fluorescent probe for monitoring indirectly iron(II) lactate hydrate (ILH) and ammonium ferric citrate (AFC), respectively. The fluorescence (FL) quenching of PSS-DPA-AgNCs by Fe3+ (it is obtained from oxidized ILH/ionized AFC) mainly derives from a dynamic quenching process. Excellent linear relationships exist between the FL quenching degree of the AgNCs and the concentrations of ILH/AFC in the range of 0.17-6.00/0.067-3.33 μmol·L-1, and corresponding limit of detection (at 3σ/slope) is 12.4/6.04 nmol·L-1. Moreover, the AgNCs probe was extended to the assays of ILH in tablets, solid beverage or ILH additive and AFC in two kinds of edible salts or syrup with satisfactory results compared with the standard 1, 10-phenanthroline method. In addition, the AgNCs probe reveals a good temperature sensing capability.
Collapse
Affiliation(s)
- Yue Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yong Jia
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|