1
|
Li B, Du L, Wu S, Yin Y. Protective effects of taurine on heat Stress-Induced cognitive impairment through Npas4 and Lcn2. Int Immunopharmacol 2024; 143:113376. [PMID: 39405930 DOI: 10.1016/j.intimp.2024.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Heat stress (HS) induces various pathophysiological responses in the brain, encompassing neuroinflammation and cognitive impairments. Although taurine has been reported to possess anti-inflammatory and cognitive-enhancing properties, its role and mechanisms in HS-induced cognitive impairment remain unclear. This study supplemented mice exposed to HS with taurine to assess its effect on cognitive function in a HS-induced mouse model. The results revealed that taurine ameliorated cognitive deficits following HS in mice and mitigated HS-induced astrocyte and microglia activation as well as blood-brain barrier (BBB) damage in the hippocampus. Mechanistically, Mechanistically, transcriptome sequencing was employed to identify that taurine regulates neuronal PAS domain protein (Npas4) and lipocalin 2 (Lcn2) during HS. Taurine was found to modulate hippocampal inflammation and influence cognitive function by upregulating Npas4 and downregulating Lcn2 after HS. Subsequently, molecular docking and AnimalTFDB database calculations were conducted, revealing that taurine might regulate the expression of Npas4 and Lcn2 by modulating the regulatory transcription factors (TFs) RE1 silencing transcription factor (REST) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1). Our findings demonstrate that taurine enhances the recovery of cognitive function through Npas4 and Lcn2 following HS, providing a theoretical basis for the clinical application of taurine in preventing or treating HS-induced cognitive impairment.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
2
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Islam MR, Tayyeb JZ, Paul HK, Islam MN, Oduselu GO, Bayıl I, Abdellattif MH, Al‐Ahmary KM, Al‐Mhyawi SR, Zaki MEA. In silico analysis of potential inhibitors for breast cancer targeting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses. J Cell Mol Med 2024; 28:e18584. [PMID: 39135338 PMCID: PMC11319393 DOI: 10.1111/jcmm.18584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 08/16/2024] Open
Abstract
Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives. In particular, ligands 04 and 07 exhibited a higher binding affinity with values of -9.9 kcal/mol and -9.1 kcal/mol, respectively, than the standard drug epirubicin hydrochloride, which had a binding affinity of -8.2 kcal/mol. The stability of the ligand-protein complexes was further confirmed by MD simulations over a 100-ns trajectory, which included assessments of hydrogen bonds, root mean square deviation (RMSD), root mean square Fluctuation (RMSF), dynamic cross-correlation matric (DCCM) and principal component analysis. The study emphasizes the need for experimental validation to confirm the therapeutic utility of these compounds. This study enhances the computational search for new BC drugs and establishes a solid foundation for subsequent experimental and clinical research.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of MedicineUniversity of JeddahJeddahSaudi Arabia
| | - Hridoy Kumar Paul
- Department of PharmacyJashore University of Science and TechnologyJashoreBangladesh
| | | | | | - Imren Bayıl
- Department of bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| | - Magda H. Abdellattif
- Department of Chemistry, Sciences CollegeUniversity College of Taraba, Taif UniversityTaifSaudi Arabia
| | | | - Saedah R. Al‐Mhyawi
- Department of Chemistry, College of ScienceUniversity of JeddahJeddahSaudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of ScienceImam Mohammad Ibn Saud Islamic University RiyadhRiyadhSaudi Arabia
| |
Collapse
|
4
|
Wu H, Wang J, Lin Y, He W, Hou J, Deng M, Chen Y, Liu Q, Lu A, Cui Z, Guan D, Yu B. Injectable Ozone-Rich Nanocomposite Hydrogel Loaded with D-Mannose for Anti-Inflammatory and Cartilage Protection in Osteoarthritis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309597. [PMID: 38279613 DOI: 10.1002/smll.202309597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is a dynamic condition characterized by cartilage damage and synovial inflammation. Ozone (O3) shows potential therapeutic effects owing to its anti-inflammatory properties; however, its high reactivity and short half-life substantially limit its effectiveness in OA treatment. In this study, an ozone-rich thermosensitive nanocomposite hydrogel loaded with D-mannose is developed for OA treatment. Briefly, O3 is encapsulated in nanoparticles (NPs) composed of perfluorotributylamine and fluorinated hyaluronic acid to improve its stability. Next, D-mannose is conjugated with α-amino of the hydroxypropyl chitin (HPCH) via Schiff base to prepare MHPCH. These nanoparticles are encapsulated in MHPCH to produce O3 NPs@MHPCH. In vitro cell experiments demonstrate that the O3 NPs@MHPCH treatment significantly reduced VEGF and inflammation levels, accompanied by a decrease in inflammatory factors such as IL-1β, IL-6, TNF-α, and iNOS. Furthermore, O3 NPs@MHPCH promotes the expression of collagen II and aggrecan and stimulates chondrocyte proliferation. Additionally, in vivo studies show that O3 NPs@MHPCH significantly alleviated OA by reducing synovial inflammation, cartilage destruction, and subchondral bone remodeling. O3 NPs@MHPCH offers a promising option for improving the efficacy of O3 therapy and reducing the risk of synovial inflammation and cartilage degeneration in OA.
Collapse
Affiliation(s)
- Hangtian Wu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jun Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yanpeng Lin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Wanling He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiahui Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Mingye Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510515, P. R. China
| | - Zhuang Cui
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
5
|
Chandarajoti K, Kara J, Suwanhom P, Nualnoi T, Puripattanavong J, Lee VS, Tipmanee V, Lomlim L. Synthesis and evaluation of coumarin derivatives on antioxidative, tyrosinase inhibitory activities, melanogenesis, and in silico investigations. Sci Rep 2024; 14:5535. [PMID: 38448547 PMCID: PMC10917816 DOI: 10.1038/s41598-024-54665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
New coumarin derivatives were designed using a 2-(2-oxo-2H-chromen-4-yl)acetic acid scaffold conjugated with amino acid esters or tyramine. The anti-tyrosinase and anti-lipid peroxidation activities of the synthesized compounds were investigated. Coumarin derivatives 7,9, 11-13, 15-18 showed strong anti-lipid peroxidation activity. Compound 13 exhibited uncompetitive tyrosinase inhibitory activity with an IC50 value of 68.86 µM. Compound 14 (% activity = 123.41) showed stronger tyrosinase activating activity than 8-methoxypsolaren (8-MOP, % activity = 109.46). In silico studies revealed different poses between the inhibitors and activators near the tyrosinase catalytic site. Compounds 13 (25-50 μM) and 14 (25-100 μM) did not show cytotoxicity against B16F10 cells. In contrast to the tyrosinase inhibition assay, compound 13 (50 μM) suppressed melanogenesis in B16F10 cells with two times higher potency than KA (100 μM). Compound 14 at 100 μM showed melanogenesis enhancement in B16F10 cells in a dose-dependent manner, however, inferior to the 8-MOP. Based on the findings, compound 13 and 14 offer potential for development as skin-lightening agents and vitiligo therapy agents, respectively.
Collapse
Affiliation(s)
- Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Jiraporn Kara
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Paptawan Suwanhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Teerapat Nualnoi
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jindaporn Puripattanavong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Luelak Lomlim
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand.
| |
Collapse
|
6
|
Revankar AG, Bagewadi ZK, Shaikh IA, Mannasaheb BA, Ghoneim MM, Khan AA, Asdaq SMB. In-vitro and computational analysis of Urolithin-A for anti-inflammatory activity on Cyclooxygenase 2 (COX-2). Saudi J Biol Sci 2023; 30:103804. [PMID: 37727526 PMCID: PMC10505678 DOI: 10.1016/j.sjbs.2023.103804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) participates in the inflammation process by converting arachidonic acid into prostaglandin G2 which increases inflammation, pain and fever. COX-2 has an active site and a heme pocket and blocking these sites stops the inflammation. Urolithin A is metabolite of ellagitannin produced from humans and animals gut microbes. In the current study, Urolithin A showed good pharmacokinetic properties. Molecular docking of the complex of Urolithin A and COX-2 revealed the ligand affinity of -7.97 kcal/mol with the ligand binding sites at TYR355, PHE518, ILE517 and GLN192 with the 4-H bonds at a distance of 2.8 Å, 2.3 Å, 2.5 Å and 1.9 Å. The RMSD plot for Urolithin A and COX-2 complex was observed to be constant throughout the duration of dynamics. A total of 3 pair of hydrogen bonds was largely observed on average of 3 simulation positions for dynamics duration of 500 ns. The MMPBSA analysis showed that active site amino acids had a binding energy of -22.0368 kJ/mol indicating that throughout the simulation the protein of target was bounded by Urolithin A. In-silico results were validated by biological assays. Urolithin A strongly revealed to exhibit anti-inflammatory effect on COX-2 with an IC50 value of 44.04 µg/mL. The anti-inflammatory capability was also depicted through reduction of protein denaturation that showed 37.6 ± 0.1 % and 43.2 ± 0.07 % reduction of protein denaturation for BSA and egg albumin respectively at 500 µg/mL. The present study, suggests Urolithin A to be an effective anti-inflammatory compound for therapeutic use.
Collapse
Affiliation(s)
- Archana G. Revankar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | | | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| | | |
Collapse
|
7
|
Zhang Y, Shen L, Xie J, Li L, Xi W, Li B, Bai Y, Yao H, Zhang S, Han B. Pushen capsule treatment promotes functional recovery after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154664. [PMID: 36682301 DOI: 10.1016/j.phymed.2023.154664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND As a leading cause of long-term disability, ischemic stroke urgently needs further research and drug development. Pushen capsule (Pushen) has been commonly applied in clinical treatment for relieving headaches, dizziness, and numbness. However, the effects of Pushen on ischemic stroke have not been revealed yet. PURPOSE To assess the efficiency of Pushen in ischemic stroke and identify its potential therapeutic targets and active ingredients for treating ischemic stroke. STUDY DESIGN AND METHODS Behavioural experiments, Triphenyltetrazolium chloride (TTC) staining, Magnetic resonance imaging (MRI), and immunofluorescence staining were performed to examine the efficiency of Pushen in stroke model mice. The potential mechanism and active ingredients of Pushen were assessed by transcriptome, 16S rDNA sequencing, metabonomics, and network pharmacology. Finally, the targets were validated by RT-PCR, chromatin immunoprecipitation (ChIP), ELISA, and molecular docking methods. RESULTS Pushen had several effects on stroke model mice, including reducing the infarct volume, improving the blood‒brain barrier (BBB), and promoting functional restoration. Furthermore, the network pharmacology, LC-MS/MS, and molecular docking results revealed that tricin, quercetin, luteolin, kaempferol, and physcion were identified as the key active ingredients in Pushen that treated ischemic stroke. Mechanistically, these key ingredients could bind with the transcription factor c-Myc and thereby regulate the expression of Adora2a, Drd2, and Ppp1r1b, which are enriched in the cAMP signaling pathway. Additionally, Pushen improved the gut microbiota dysbiosis and reduced inosine levels in feces and serum, thereby reducing Adora2a expression in the brain. CONCLUSIONS Our study confirmed that Pushen was effective for treating ischemic stroke and has promising clinical applications.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jian Xie
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wen Xi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Bin Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Shenyang Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
8
|
Aslam S, Haroon M, Akhtar T, Arshad M, Khalid M, Shafiq Z, Imran M, Ullah A. Synthesis, Characterization, and DFT-Based Electronic and Nonlinear Optical Properties of Methyl 1-(arylsulfonyl)-2-aryl-1H-benzo[d]imidazole-6-carboxylates. ACS OMEGA 2022; 7:31036-31046. [PMID: 36092624 PMCID: PMC9453983 DOI: 10.1021/acsomega.2c02805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Herein, a series of N-1-sulfonyl substituted derivatives of 2-substituted benzimidazoles (2a-2e) were designed and synthesized via structural tailoring of the acceptor part of donor-π-acceptor schemes, and their nonlinear optic (NLO) characteristics were reported. The structures of 2a-2e were investigated and their characterization was accomplished by employing spectroscopic procedures, i.e., UV-vis, FT-IR, and 1H and 13C NMR. Further, a density functional theory (DFT) approach was used to calculate UV-vis, vibrational, and 1H and 13C NMR techniques; frontier molecular orbitals (FMOs); global reactivity parameters (GRPs); natural bond orbitals (NBOs); optical and vibrational analysis; and nonlinear optics (NLO). The most promising results were obtained for 6-nitro-2-(4-nitrophenyl)-1-(4-nitrophenylsulfonyl)-1H-benzo[d]imidazole among entitled compounds, as it exhibited the highest ⟨α⟩ and βtot values, showing it is an eye-catching NLO material. This DFT study evokes the interest of researchers regarding the development of benzimidazole-based tempting NLO compounds that could be beneficial in modern hi-tech applications.
Collapse
Affiliation(s)
- Shumaila Aslam
- Department
of Chemistry, Mirpur University of Science
and Technology (MUST), 10250 Mirpur, Azad Jammu and
Kashmir, Pakistan
| | - Muhammad Haroon
- Department
of Chemistry, Mirpur University of Science
and Technology (MUST), 10250 Mirpur, Azad Jammu and
Kashmir, Pakistan
- Department
of Chemistry, Government Major Muhammad
Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur (Affiliated
with Mirpur University of Science and Technology (MUST)), 10250 Mirpur, Azad Jammu and Kashmir, Pakistan
| | - Tashfeen Akhtar
- Department
of Chemistry, Mirpur University of Science
and Technology (MUST), 10250 Mirpur, Azad Jammu and
Kashmir, Pakistan
| | - Muhammad Arshad
- Department
of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| | - Muhammad Khalid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Aman Ullah
- Department
of Agricultural, Food and Nutritional Science, Faculty of Agricultural,
Life and Environmental Sciences, University
of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
9
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
10
|
Fouda AM, El-Nassag MA, Elhenawy AA, Shati AA, Alfaifi MY, Elbehairi SEI, Alam MM, El-Agrody AM. Synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives and exploring molecular and cytotoxic properties based on DFT and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Wu Q, Yin CH, Li Y, Cai JQ, Yang HY, Huang YY, Zheng YX, Xiong K, Yu HL, Lu AP, Wang KX, Guan DG, Chen YP. Detecting Critical Functional Ingredients Group and Mechanism of Xuebijing Injection in Treating Sepsis. Front Pharmacol 2021; 12:769190. [PMID: 34938184 PMCID: PMC8687625 DOI: 10.3389/fphar.2021.769190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by various infectious or noninfectious factors, which can lead to shock, multiple organ dysfunction syndrome, and death. It is one of the common complications and a main cause of death in critically ill patients. At present, the treatments of sepsis are mainly focused on the controlling of inflammatory response and reduction of various organ function damage, including anti-infection, hormones, mechanical ventilation, nutritional support, and traditional Chinese medicine (TCM). Among them, Xuebijing injection (XBJI) is an important derivative of TCM, which is widely used in clinical research. However, the molecular mechanism of XBJI on sepsis is still not clear. The mechanism of treatment of "bacteria, poison and inflammation" and the effects of multi-ingredient, multi-target, and multi-pathway have still not been clarified. For solving this issue, we designed a new systems pharmacology strategy which combines target genes of XBJI and the pathogenetic genes of sepsis to construct functional response space (FRS). The key response proteins in the FRS were determined by using a novel node importance calculation method and were condensed by a dynamic programming strategy to conduct the critical functional ingredients group (CFIG). The results showed that enriched pathways of key response proteins selected from FRS could cover 95.83% of the enriched pathways of reference targets, which were defined as the intersections of ingredient targets and pathogenetic genes. The targets of the optimized CFIG with 60 ingredients could be enriched into 182 pathways which covered 81.58% of 152 pathways of 1,606 pathogenetic genes. The prediction of CFIG targets showed that the CFIG of XBJI could affect sepsis synergistically through genes such as TAK1, TNF-α, IL-1β, and MEK1 in the pathways of MAPK, NF-κB, PI3K-AKT, Toll-like receptor, and tumor necrosis factor signaling. Finally, the effects of apigenin, baicalein, and luteolin were evaluated by in vitro experiments and were proved to be effective in reducing the production of intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW264.7 cells, significantly. These results indicate that the novel integrative model can promote reliability and accuracy on depicting the CFIGs in XBJI and figure out a methodological coordinate for simplicity, mechanism analysis, and secondary development of formulas in TCM.
Collapse
Affiliation(s)
- Qi- Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuan-Hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Han-Yun Yang
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Ying-Ying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Xu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Sameeh MY, Khowdiary MM, Nassar HS, Abdelall MM, Alderhami SA, Elhenawy AA. Discovery Potent of Thiazolidinedione Derivatives as Antioxidant, α-Amylase Inhibitor, and Antidiabetic Agent. Biomedicines 2021; 10:24. [PMID: 35052707 PMCID: PMC8773338 DOI: 10.3390/biomedicines10010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
This work aimed to synthesize safe antihyperglycemic derivatives bearing thiazolidinedione fragment based on spectral data. The DFT theory discussed the frontier molecular orbitals (FMOs), chemical reactivity of compounds, and molecular electrostatic potential (MEP) to explain interaction between thiazolidinediones and the biological receptor. α-amylase is known as the initiator-hydrolysis of the of polysaccharides; therefore, developing α-amylase inhibitors can open the way for a potential diabetes mellitus drug. The molecular docking simulation was performed into the active site of PPAR-γ and α-amylase. We evaluated in vitro α-amylase's potency and radical scavenging ability. The compound 6 has the highest potency against α-amylase and radical scavenging compared to the reference drug and other members. They have been applied against anti-diabetic and anti-hyperlipidemic activity (in vivo) based on an alloxan-induced diabetic rat model during a 30-day treatment protocol. The most potent anti hyperglycemic members are 6 and 11 with reduction percentage of blood glucose level by 69.55% and 66.95%, respectively; compared with the normal control. Other members exhibited moderate to low anti-diabetic potency. All compounds showed a normal value against the tested biochemical parameters (CH, LDL, and HDL). The ADMET profile showed good oral bioavailability without any observed carcinogenesis effect.
Collapse
Affiliation(s)
- Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Science, Alleeth University Collage, Umm Al-Qura University, Makkah 24211, Saudi Arabia;
| | - Manal M. Khowdiary
- Chemistry Department, Faculty of Applied Science, Alleeth University Collage, Umm Al-Qura University, Makkah 24211, Saudi Arabia;
- Applied Surfactant Laboratory, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Hisham S. Nassar
- Department of Chemistry, Faculty of Science and Arts in Al-Mukhwah, Al-Baha University, Al-Mukhwah 65311, Saudi Arabia; (H.S.N.); (S.A.A.)
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt;
| | - Mahmoud M. Abdelall
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt;
| | - Suliman A. Alderhami
- Department of Chemistry, Faculty of Science and Arts in Al-Mukhwah, Al-Baha University, Al-Mukhwah 65311, Saudi Arabia; (H.S.N.); (S.A.A.)
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science and Arts in Al-Mukhwah, Al-Baha University, Al-Mukhwah 65311, Saudi Arabia; (H.S.N.); (S.A.A.)
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt;
| |
Collapse
|
13
|
Li Y, Wang K, Chen Y, Cai J, Qin X, Lu A, Guan D, Qin G, Chen W. A System Pharmacology Model for Decoding the Synergistic Mechanisms of Compound Kushen Injection in Treating Breast Cancer. Front Pharmacol 2021; 12:723147. [PMID: 34899291 PMCID: PMC8660088 DOI: 10.3389/fphar.2021.723147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women worldwide and can be treated using various methods; however, side effects of these treatments cannot be ignored. Increasing evidence indicates that compound kushen injection (CKI) can be used to treat BC. However, traditional Chinese medicine (TCM) is characterized by “multi-components” and “multi-targets”, which make it challenging to clarify the potential therapeutic mechanisms of CKI on BC. Herein, we designed a novel system pharmacology strategy using differentially expressed gene analysis, pharmacokinetics synthesis screening, target identification, network analysis, and docking validation to construct the synergy contribution degree (SCD) and therapeutic response index (TRI) model to capture the critical components responding to synergistic mechanisms of CKI in BC. Through our designed mathematical models, we defined 24 components as a high contribution group of synergistic components (HCGSC) from 113 potentially active components of CKI based on ADME parameters. Pathway enrichment analysis of HCGSC targets indicated that Rhizoma Heterosmilacis and Radix Sophorae Flavescentis could synergistically target the PI3K-Akt signaling pathway and the cAMP signaling pathway to treat BC. Additionally, TRI analysis showed that the average affinity of HCGSC and targets involved in the key pathways reached -6.47 kcal/mmol, while in vitro experiments proved that two of the three high TRI-scored components in the HCGSC showed significant inhibitory effects on breast cancer cell proliferation and migration. These results demonstrate the accuracy and reliability of the proposed strategy.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Wang
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Alam MM, Nazreen S, Almalki ASA, Elhenawy AA, Alsenani NI, Elbehairi SEI, Malebari AM, Alfaifi MY, Alsharif MA, Alfaifi SYM. Naproxen Based 1,3,4-Oxadiazole Derivatives as EGFR Inhibitors: Design, Synthesis, Anticancer, and Computational Studies. Pharmaceuticals (Basel) 2021; 14:870. [PMID: 34577570 PMCID: PMC8469912 DOI: 10.3390/ph14090870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
A library of novel naproxen based 1,3,4-oxadiazole derivatives (8-16 and 19-26) has been synthesized and screened for cytotoxicity as EGFR inhibitors. Among the synthesized hybrids, compound2-(4-((5-((S)-1-(2-methoxynaphthalen-6-yl)ethyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol(15) was the most potent compound against MCF-7 and HepG2cancer cells with IC50 of 2.13 and 1.63 µg/mL, respectively, and was equipotent to doxorubicin (IC50 1.62 µg/mL) towards HepG2. Furthermore, compound 15 inhibited EGFR kinase with IC50 0.41 μM compared to standard drug Erlotinib (IC50 0.30 μM). The active compound induces a high percentage of necrosis towards MCF-7, HePG2 and HCT 116 cells. The docking studies, DFT and MEP also supported the biological data. These results demonstrated that these synthesized naproxen hybrids have EGFR inhibition effects and can be used as leads for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | | | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Nawaf I. Alsenani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (S.E.I.E.); (M.Y.A.)
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 22311, Egypt
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (S.E.I.E.); (M.Y.A.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia;
| | - Sulaiman Y. M. Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
15
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
16
|
Naglah AM, Moustafa GO, Elhenawy AA, Mounier MM, El-Sayed H, Al-Omar MA, Almehizia AA, Bhat MA. N α-1, 3-Benzenedicarbonyl-Bis-(Amino Acid) and Dipeptide Candidates: Synthesis, Cytotoxic, Antimicrobial and Molecular Docking Investigation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1315-1332. [PMID: 33790542 PMCID: PMC8006965 DOI: 10.2147/dddt.s276504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Purpose The objective of our work was to prepare a potent and safe antimicrobial and anticancer agents, through synthesis of several peptides and examine their biological activities, namely as, cytotoxically potent and antimicrobial and antifungal agents. Introduction Multidrug-resistant microbial strains have arisen against all antibiotics in clinical use. Infections caused by these bacteria threaten global public health and are associated with high mortality rates. Methods The main backbone structure for the novel synthesized linear peptide is Nα-1, 3-benzenedicarbonyl-bis-(Amino acids)-X, (3–11). A computational docking study against DNA gyrase was performed to formulate a mode of action of the small compounds as antimicrobial agents. Results The peptide-bearing methionine-ester (4) exhibited potent antimicrobial activity compared to the other synthesized compounds, while, peptide (8), which had methionine-hydrazide fragment was the most potent as antifungal agent against Aspergillus niger with 100% inhibition percent. Compounds (6 and 7) showed the highest potency against breast human tumor cell line “MCF-7” with 95.1% and 79.8% of cell inhibition, respectively. The nine compounds possessed weak to moderate antiproliferative effect over colon tumor cell line. The docking results suggest good fitting through different hydrogen bond interactions with the protein residues. In silico ADMET study also evaluated and suggested that these compounds had promising oral bioavailability features. Conclusion The tested compounds need further modification to have significant antimicrobial and antitumor efficacy compared to the reference drugs.
Collapse
Affiliation(s)
- Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt
| | - Gaber O Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys'Branch), Cairo, Egypt.,Chemistry Department, Faculty of Science, Albaha University, Al Baha, Saudi Arabia
| | - Marwa M Mounier
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Synthesis, Cytotoxic Activity, Crystal Structure, DFT Studies and Molecular Docking of 3-Amino-1-(2,5-dichlorophenyl)-8-methoxy-1H-benzo[f]chromene-2-carbonitrile. CRYSTALS 2021. [DOI: 10.3390/cryst11020184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The target compound 3-amino-1-(2,5-d ichlorophenyl)-8-methoxy-1H-benzo[f]-chromene-2-carbonitrile (4) was synthesized via a reaction of 6-methoxynaphthalen-2-ol (1), 2,5-dichlorobenzaldehyde (2), and malononitrile (3) in ethanolic piperidine solution under microwave irradiation. The newly synthesized β-enaminonitrile was characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy, elemental analysis and X-ray diffraction data. Its cytotoxic activity was evaluated against three different human cancer cell lines MDA-MB-231, A549, and MIA PaCa-2 in comparison to the positive controls etoposide and camptothecin employing the XTT cell viability assay. The analysis of the Hirshfeld surface was utilized to visualize the reliability of the crystal package. The obtained results confirmed that the tested molecule revealed promising cytotoxic activities against the three cancer cell lines. Furthermore, theoretical calculations (DFT) were carried out with the Becke3-Lee-Yang-parr (B3LYP) level using 6-311++G(d,p) basis. The optimization geometry for molecular structures was in agreement with the X-ray structure data. The HOMO-LUMO energy gap of the studied system was discussed. The intermolecular-interactions were studied through analysis of the topological-electron-density(r) using the QTAIM and NCI methods. The novel compound exhibited favorable ADMET properties and its molecular modeling analysis showed strong interaction with DNA methyltransferase 1.
Collapse
|
18
|
Coumarin Sulfonamides and Amides Derivatives: Design, Synthesis, and Antitumor Activity In Vitro. Molecules 2021; 26:molecules26040786. [PMID: 33546294 PMCID: PMC7913302 DOI: 10.3390/molecules26040786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Coumarins possesses immeasurable antitumor potential with minimum side effects depending on the substitutions on the basic nucleus, which exhibits great prospects for antitumor drug development. In an attempt to develop novel antitumor candidates, a series of coumarin sulfonamides and amides derivatives were designed and synthetized. The majority of these derivatives showed good cytotoxic activity against MDA-MB-231 and KB cell lines, among which compound 9c was the most potent against MDA-MB-231 cells, with IC50 value of 9.33 μM, comparable to 5-fluorouracil. Further investigation revealed that compound 9c had versatile properties against tumors, including inhibition of cell migration and invasion as well as inducing apoptosis. Reactive oxygen species (ROS) assay and western blotting analysis suggested that compound 9c promoted cancer cell apoptosis by increasing ROS levels and upregulating the expression of caspase-3 in MDA-MB-231 cells. These results indicated that compound 9c could be promising lead compound for further antitumor drug research.
Collapse
|
19
|
New carbazole-based organic dyes with different acceptors for dye-sensitized solar cells: Synthesis, characterization, dssc fabrications and density functional theory studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129297] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Ammar YA, Khalifa MM, Eisa SI, Ismail MMF. New Naproxen Analogs: Synthesis, Docking and Anti-Inflammatory Evaluation. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2020.1871037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yousry A. Ammar
- Organic Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Maha M. Khalifa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Sally I. Eisa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Magda M. F. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Amino-Acid Derivatives of Pyranocoumarins. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Song X, Fan J, Liu L, Liu X, Gao F. Coumarin derivatives with anticancer activities: An update. Arch Pharm (Weinheim) 2020; 353:e2000025. [DOI: 10.1002/ardp.202000025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xu‐Feng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of Technology Beijing China
| | - Jing Fan
- Hengshui University Hengshui Hebei China
| | - Lan Liu
- Medicine Vocational and Technical SchoolWuhan University Wuhan Hubei China
| | - Xiao‐Feng Liu
- Sinolite Industrial Co., Ltd. Hangzhou Zhejiang China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP)Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong China
| |
Collapse
|
23
|
Naproxenylamino acid derivatives: Design, synthesis, docking, QSAR and anti-inflammatory and analgesic activity. Biomed Pharmacother 2019; 116:109024. [DOI: 10.1016/j.biopha.2019.109024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023] Open
|