1
|
Roscales S, Csáky AG. Metal-Free Aminophosphonation: Eco-Friendly Synthesis and Photophysical Properties of Fluorescent 3-(Aminoimidazo[1,2-a]Pyridin-2-yl)Phosphonates. Angew Chem Int Ed Engl 2024:e202412300. [PMID: 39218782 DOI: 10.1002/anie.202412300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
We report a novel, metal-free procedure for the direct aminophosphonation of imidazo[1,2-a]pyridines in green solvents under open air conditions. This method is characterized by its mild and sustainable conditions, ease of operation, scalability, and excellent functional group compatibility. The synthesized compounds exhibit promising photophysical properties, including significant Stokes shifts and quantum yields, making them potential candidates for innovative fluorescent probes.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| | - Aurelio G Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| |
Collapse
|
2
|
Divya D, Ramanjaneyulu M, Nandhagopal M, Srinivasan V, Thennarasu S. A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124286. [PMID: 38663135 DOI: 10.1016/j.saa.2024.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/15/2024]
Abstract
A simple single step one pot multicomponent reaction was performed to synthesize N-(tert-butyl)-2-(furan-2-yl)imidazo[1,2-a]pyridine-3-amine (TBFIPA). The synthesized TBFIPA was subjected to library of cations to study its ability for selective and sensitive detection of specific metal ions. Selective detection of chromium ions by TBFIPA were found from the significant hypsochromic shift (335 nm → 285 nm) in the UV-Visible spectra. The fluorescent TBFIPA displays complete quenching of fluorescence under UV lamp (365 nm) only in the presence of chromium without the interference of common metal ions. Binding constant (ka) obtained from Benesi-Hildebrand plot is 0.21 × 105 M-1, limit of detection (LOD) and limit of quantification (LOQ) of TBFIPA toward Cr3+ ions are 4.70 × 10-7 M and 1.56 × 10-7 M, respectively. The mechanism proposed during complex formation were supported by stoichiometric Job continuous variation plot, 1H NMR titration and ESI-MS spectroscopic data. All the experimental confirmation for complex formation were corroborated with theoretical DFT studies optimized using RB3LYP/6-31G(d) basis set. The selectivity and sensitivity of TBFIPA toward Cr3+ ions are found suitable to design a user-friendly silica based portable test kit. Alongside, TBFIPA was successfully utilized for imaging onion epidermal cells. Furthermore, the results obtained for biological, environmental, and industrial samples provided solid evidence to estimate chromium ions using TBFIPA in these real samples.
Collapse
Affiliation(s)
- Dhakshinamurthy Divya
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India; Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Mala Ramanjaneyulu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Manivannan Nandhagopal
- Saveetha Medical College and Hospital, Institute of Medical and Technical Science, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Venkatesan Srinivasan
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India.
| |
Collapse
|
3
|
Nandhagopal M, Mala R, Somarathinam K, Dhakshinamurthy D, Narayanasamy M, Vijayan P, Shankar MM. Anti-fungal effects of novel N-(tert-butyl)-2-(pyridin-2-yl)imidazo[1,2-a]pyridin-3-amine derivative and it's in-vitro, in-silico, and mode of action against Candida spp. Arch Microbiol 2024; 206:186. [PMID: 38509398 DOI: 10.1007/s00203-023-03780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 03/22/2024]
Abstract
Imidazoles are a category of azole antifungals that encompass compounds such as ketoconazole, miconazole, esomeprazole, and clotrimazole. In contrast, the triazoles group, which includes fluconazole, voriconazole, and itraconazole, also plays a significant role. The rise of antibiotic resistance in fungal pathogens has evolved into a substantial global public health concern. In this study, two newly synthesized imidazo[1,2-a]pyridine derivative (Probe I and Probe II) molecules were investigated for its antimicrobial potency against of a panel of bacterial (Gram-positive and Gram-negative bacteria) and fungal pathogens. Among the different types of pathogens, we found that Probe II showed excellent antifungal activity against fungal pathogens, based on the preliminary screening the potent molecule further investigated against multidrug-resistance Candida sp. (n = 10) and compared with commercial molecules. In addition, in-silico molecular docking, its dynamics, absorption, distribution, metabolism, excretion and toxicity (ADMET) were analyzed. In this study, the small molecule (Probe II) displayed potent activity only against the Candida spp. including several multidrug-resistant Candida spp. Probe II exhibited minimum inhibitory concentration ranges from 4 to 16 µg/mL and minimum fungicidal concentration in the range 4‒32 µg/mL as the lowest concentration enough to eliminate the Candida spp. The selected molecules inhibit the formation of yeast to mold as well as ergosterol formation by the computational simulation against Sterol 14-alpha demethylase (CYP51) and inhibition of ergosterol biosynthesis by in-vitro model show that the Probe II completely inhibits the formation of ergosterol in yeast cells at 2× MIC. The ADMET analysis Probe II could be moderately toxic to the human being, though the in-vitro toxicity studies will help to understand the real-time toxic level. The novel compound Probe II, which was synthesized during the study, shows promise for development into a new generation of drug treatments aimed at addressing the emerging drug resistance in Candida sp.
Collapse
Affiliation(s)
- Manivannan Nandhagopal
- Bio-Control and Microbial Product Lab, Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, India.
| | - Ramanjaneyulu Mala
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Kanagasabai Somarathinam
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India
| | - Divya Dhakshinamurthy
- Department of Chemistry, Vel Tech Rangarajan Dr, Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - Mathivanan Narayanasamy
- Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Priyadharshni Vijayan
- Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Manimuthu Mani Shankar
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, India
| |
Collapse
|
4
|
Coordination of Distal Carboxylate Anion Alters Metal Ion Specific Binding in Imidazo[1,2-a]pyridine Congeners. J Fluoresc 2023:10.1007/s10895-022-03122-x. [PMID: 36705793 DOI: 10.1007/s10895-022-03122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Imidazo[1,2-a]pyridine derivatives have excellent potential for chelation with transition metal ions. Two new imidazo[1,2-a]pyridine-8-carboxylates were synthesized and characterized by 1H NMR, 13C NMR, HRMS, and single crystal-XRD techniques. Methyl carboxylate (probe 1) turns on fluorescence upon coordination with Zn2+, while sodium carboxylate (probe 2) turns off its fluorescence upon coordination with Co2+ or Cu2+ ions present in aqueous acetonitrile medium. 13C NMR study revealed that the change in metal ion specific binding was due to the involvement of carboxylate anion in complex formation with Co2+ or Cu2+ ions. The carboxylate anion at 8-position also enhanced the sensitivity of detection of probe 2 by an order of magnitude (detection limits: 3.804 × 10-7 M, probe 1/Zn2+; 0.420 × 10-7 M, probe 2/Co2+ and 0.304 × 10-7 M, probe 2/Cu2+). The detection limits of probes 1 and 2 comply well with the World Health Organization (WHO) and US Environmental Protection Agency (US-EPA) guidelines for detection of heavy metal ions present in drinking water and ground water. Both the probes form a 1:1 complex with Zn2+, Co2+ or Cu2+, and the stoichiometry was verified by Job plot and ESI-mass analysis. The sensing mechanism is explained using 13C NMR experiments, ESI-mass analytical data and theoretical DFT calculations. The suitability of probes 1 and 2 for on-site detection and quantitative determination of Zn2+, Co2+ and Cu2+ ions present in biological, environmental and industrial samples is demonstrated. In addition, both 1 and 2 are used for detection of intracellular contamination of Zn2+, Co2+ or Cu2+ ions in onion epidermal cells.
Collapse
|
5
|
Chaudhran PA, Sharma A. Progress in the Development of Imidazopyridine-Based Fluorescent Probes for Diverse Applications. Crit Rev Anal Chem 2022; 54:2148-2165. [PMID: 36562726 DOI: 10.1080/10408347.2022.2158720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Different classes of Imidazopyridine i.e., Imidazo[1,2-a]pyridine, Imidazo[1,5-a] pyridine, Imidazo[4,5-b]pyridine, have shown versatile applications in various fields. In this review, we have concisely presented the usefulness of the fluorescent property of imidazopyridine in different fields such as imaging tools, optoelectronics, metal ion detection, etc. Fluorescence mechanisms such as excited state intramolecular proton transfer, photoinduced electron transfer, fluorescence resonance energy transfer, intramolecular charge transfer, etc. are incorporated in the designed fluorophore to make it for fluorescent applications. It has been widely employed for metal ion detection, where selective metal ion detection is possible with triazole-attached imidazopyridine, β-carboline imidazopyridine hybrid, quinoline conjugated imidazopyridine, and many more. Also, other popular applications involve organic light emitting diodes and cell imaging. This review shed a light on recent development in this area especially focusing on the optical properties of the molecules with their usage which would be helpful in designing application-based new imidazopyridine derivatives.
Collapse
Affiliation(s)
- Preeti AshokKumar Chaudhran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, India
| |
Collapse
|
6
|
Kurva M, Claudio-Catalán MÁ, Rentería-Gómez Á, Jiménez-Halla JOC, González-García G, Velusamy J, Ramos-Ortíz G, Castaño-González K, Piazza V, Gámez-Montaño R. Multicomponent one-pot synthesis of luminescent Imidazo [1,2-a]pyridine-3-amines. Studies of fluorescence, solvatochromism, TD-DFT calculations and bioimaging application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Sasan S, Chopra T, Gupta A, Tsering D, Kapoor KK, Parkesh R. Fluorescence "Turn-Off" and Colorimetric Sensor for Fe 2+, Fe 3+, and Cu 2+ Ions Based on a 2,5,7-Triarylimidazopyridine Scaffold. ACS OMEGA 2022; 7:11114-11125. [PMID: 35415353 PMCID: PMC8991908 DOI: 10.1021/acsomega.1c07193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 05/05/2023]
Abstract
Two cyanoimidazopyridine-based sensors (SS1 and SS2) were explored for the colorimetric and fluorometric detection of Fe2+, Fe3+, and Cu2+ ions in the semi-aqueous medium. The "turn-off" fluorescence response of both sensors to these ions was due to the restriction in internal charge transfer. Job's plot and semi-empirical calculations revealed that SS1 and SS2 complexed with Cu2+ ions in a 1:1 ratio and Fe2+/3+ ions in a 2:1 ratio, respectively. The sensors were found to have high binding constant (K a) values and low detection limit values. FMO analysis using the semi-empirical quantum mechanics method revealed the decrease in energy gap after complexation with metal ions. Sensor-coated filter paper strips were prepared and analyzed, where the color changes in the strips could be utilized for the real-time detection of Fe2+, Fe3+, and Cu2+ ions.
Collapse
Affiliation(s)
- Sonakshi Sasan
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Tavishi Chopra
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Annah Gupta
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Dolma Tsering
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
8
|
Mala R, Divya D, Vijayan P, Narayanasamy M, Thennarasu S. Two Imidazo[1,2‐a]pyridine Congeners Show Aggregation‐Induced Emission (AIE): Exploring AIE Potential for Sensor and Imaging Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202103408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramanjaneyulu Mala
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Dhakshinamurthy Divya
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Priyadharshni Vijayan
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Mathivanan Narayanasamy
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Sathiah Thennarasu
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| |
Collapse
|
9
|
Divya D, Thennarasu S. Rotational Isomerization about C−C Single Bond in a Novel ICT Probe Facilitates Naked‐Eye, Colorimetric and Ratiometric Detection of Cobalt in Aqueous Samples**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dhakshinamurthy Divya
- Organic and Bioorganic Chemistry Laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600020 India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600020 India
| |
Collapse
|
10
|
Chen Q, Chen S, Wu H, Zeng X, Chen W, Sun G, Wang Z. Application of 2-Aminopyridines in the Synthesis of Five- and Six-Membered Azaheterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Sharma S, Paul AK, Singh V. La(OTf)3-catalysed one-pot synthesis of pyrazole tethered imidazo[1,2-a]azine derivatives and evaluation of their light emitting properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj05426j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
La(OTf)3catalysed one-pot facile protocol has been unfolded towards diversity-oriented synthesis of highly fluorescent pyrazole C-3(5) tethered imidazo[1,2-a]azines.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology (NIT) Kurukshetra
- India
| | - Virender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| |
Collapse
|
12
|
Dhanalakshmi G, Mala R, Thennarasu S, Aravindhan S. N-( tert-Butyl)-2-(2-nitrophenyl)imidazo[1,2- a]pyridin-3-amine. IUCRDATA 2019. [DOI: 10.1107/s2414314619014779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, C17H18N4O2, the dihedral angle between the pyridine and benzene rings is 55.68 (11)°. In the crystal, N—H...N hydrogen bonds link the molecules into [010] chains.
Collapse
|