1
|
El-Abassy OM, Maged K, El-Henawee MM, Abd El-Hay SS. Development of eco-friendly spectrophotometric methods for analysis of metformin hydrochloride and linagliptin in presence of metformin toxic impurity in their pure and dosage forms: Validation, practicality and greenness studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123844. [PMID: 38198995 DOI: 10.1016/j.saa.2024.123844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Metformin is considered as type 2 diabetes first line treatment according to American Diabetes Association and European Association. But, in some cases, di- or tri - therapy should be prescribed for glycemic management, prevention of the maximum dose side effects and induced effectiveness. Co-administration of Linagliptin with metformin has many benefits on diabetic patients such as decrease the possibility of hypoglycemia. For the first time, novel and reliable techniques were developed and verified for the concurrent quantification of metformin hydrochloride and linagliptin, while accounting for the existence of metformin toxic impurity 1-cyanoguanidine in their pure and dosage forms. Method (A) utilizes the zero-order spectrophotometric approach to quantitatively determine the concentration of linagliptin. The measurements are performed at a wavelength of 295 nm. The double divisor derivative ratio spectrophotometric method is used in Method (B) to measure the amounts of metformin and cyanoguanidine at 252 nm and 219 nm wavelengths, respectively. The spectrophotometric method (C) for determining metformin and cyanoguanidine at 252 nm and 223 nm, respectively, is based on the single divisor derivative ratio-zero crossing technique. The obtained findings were subjected to statistical comparison with the reported method, revealing no statistically significant differences. The Green Analytical Procedure Index (GAPI) and Analytical GREEnness Metric approach (AGREE) determined that these approaches had a high degree of environmental friendliness. Additionally, the proposed strategy was deemed to be practical according to the Blue Applicability Grade Index (BAGI) assessment tool.
Collapse
Affiliation(s)
- Omar M El-Abassy
- Egyptian Russian University, Faculty of Pharmacy, Pharmaceutical Chemistry Department, Badr City, Cairo 11829, Egypt.
| | - Khaled Maged
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Sinai University, El-Areesh, Egypt
| | - Magda M El-Henawee
- PharmaceuticalAnalytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Soad S Abd El-Hay
- PharmaceuticalAnalytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Sarkis N, Sawan A. Method Development for Simultaneously Determining Indomethacin and Nicotinamide in New Combination in Oral Dosage Formulations and Co-Amorphous Systems Using Three UV Spectrophotometric Techniques. Int J Anal Chem 2024; 2024:2035824. [PMID: 38414841 PMCID: PMC10898952 DOI: 10.1155/2024/2035824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
This research aims to develop methods for simultaneously determining indomethacin (IND) and nicotinamide (NCT) in binary mixtures, immediate-release capsules, sustained-release capsules, and co-amorphous systems, which were designed in 2021 to improve the solubility, dissolution rate, and stability of the amorphous state of indomethacin. Moreover, this new combination may have also other possible medical benefits. Therefore, there is a need to have simple, sensitive, and precise developed methods for simultaneous quantification analysis of IND/NCT in several different ratios. Three UV-spectrophotometry techniques were deployed: zero-crossing point in the second-order derivative, dual-wavelength in the first-order derivative, and ratio subtraction coupled with spectrum subtraction. The limit of detection and the limit of quantifications (LOD and LOQ) for IND were 0.41 and 1.25, 0.55 and 1.66, and 0.53 and 1.62 μg/mL, respectively, while for NCT were 0.53 and 1.59, 0.38 and 1.14, and 0.36 and 1.08 μg/mL, respectively. All methods were linear at least in the range of 2.5-40.0 μg/mL. All proposed methods were validated according to ICH guidelines and their application on the dosage formulations was carried out. Finally, the proposed methods were compared to a reference method for each IND and NCT, and no significant statistical variance was found.
Collapse
Affiliation(s)
- Nazira Sarkis
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria
| | - Abdulkader Sawan
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria
| |
Collapse
|
3
|
Fawzy MG, Said MA. Valuation of environmental influence of recently invented high-performance liquid chromatographic method for hypoglycemic mixtures of gliflozins and metformin in the presence of melamine impurities: Application of molecular modeling simulation approach. J Sep Sci 2023; 46:e2300267. [PMID: 37485588 DOI: 10.1002/jssc.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Molecular modeling is the science of representing molecular structures numerically and simulating their behavior with the equations of quantum and classical physics. Coupling molecular modeling and simulation with chromatographic resolution for pharmaceutical products constitutes a new technique in pharmaceutical analysis. An innovative high-performance liquid chromatographic (HPLC) methodology was developed for the quantification of metformin hydrochloride (MET), empagliflozin (EMP), and canagliflozin (CAN) in bulk, laboratory-developed combinations, pharmaceutical tablets, and in the presence of melamine. Chromatographic separation was accomplished using a Symmetry column with 0.03 M potassium dihydrogen phosphate buffer and 0.02 M heptane sulphonic acid: acetonitrile as the mobile phase. Molecular modeling using molecular operating environment software was applied to properly select the stationary phase suitable for the developed HPLC method. Additionally, molecular modeling estimates and validates binding between the studied analytes and the stationary phase to clarify and explain the chromatographic separation and elution order. In accordance with the International Conference of Harmonization recommendations, the method was validated in terms of linearity, accuracy, precision, and selectivity. The linearity ranges (μg/ml) were 200-1500 (MET), 2-15 (EMP), and 20-150 (CAN) and the limit of detection values were in the ranges of 0.17-54.58 μg/ml. Analysis of pharmaceutical tablets using the suggested approach yielded satisfactory outcomes. As a result, it might be used in quality control laboratories to analyze the aforementioned medications.
Collapse
Affiliation(s)
- Michael Gamal Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| |
Collapse
|
4
|
Ahmed AR, Korany MA, Galal SM, Ragab MAA. Green and white MEKC for determination of different anti-diabetic binary mixtures and their triple-combo pill. BMC Chem 2023; 17:86. [PMID: 37488616 PMCID: PMC10367405 DOI: 10.1186/s13065-023-00997-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
The work introduces green and white sustainable micellar electrokinetic chromatography (MEKC) procedure that could analyze therapeutically related drugs, empagliflozin (EMP), linagliptin (LIN) and metformin (MET) which are antidiabetic drugs with different mechanism of action, in their different pharmaceutical combinations. The method not only comply with the green analytical concepts, but also it is in line with sustainable analytical concepts as it is economic by applying the same operating conditions to analyze different pharmaceuticals in quality control (QC) labs which is a crucial step in QC labs and research centers to save time, effort, and money. Moreover, the method functionality regarding its scope with its achieved levels of accuracy, precision, low detection, and quantitation limits is tested using white assessment tool and compared with reported methods. The proposed MEKC coupled with a diode array detector (DAD) has been developed and validated for micro estimation of EMP and LIN in their low critical concentrations with MET in a ratio of (EMP: MET, 1:40) and (LIN: MET, 1:200). Separation was achieved within 6 min using fused silica capillary (40 cm × 50 µm id) using 20 mM Tris buffer (pH 10) in presence of 50 mM sodium dodecyl sulphate and 10% v/v methanol. The concentration ranges of the studied anti-diabetic drugs were 10-500, 10-100 and 2.5-100 µg. mL-1 for MET, EMP and LIN, respectively. The developed method is the first MEKC for concurrent determination of EMP, LIN and MET with high separation efficiency, low solvent consumption and regard as an easy green and white analytical tool. Moreover, Greenness and whiteness assessment were done via the most widely used Analytical Eco-Scale, the innovative AGREE tool and the RGB 12 algorithm.
Collapse
Affiliation(s)
- Aya R Ahmed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, El-Messalah, Alexandria, 21521, Egypt
| | - Mohamed A Korany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, El-Messalah, Alexandria, 21521, Egypt
| | - Shereen M Galal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, El-Messalah, Alexandria, 21521, Egypt
| | - Marwa A A Ragab
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, El-Messalah, Alexandria, 21521, Egypt.
| |
Collapse
|
5
|
Production of copper-graphene nanocomposite as a voltammetric sensor for determination of anti-diabetic metformin using response surface methodology. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Voltammetric determination of linagliptin in bulk and plasma sample using an electrochemical sensor based on L-cysteine modified 1T-MoS2 nanosheets. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Taheri Z, Afkhami A, Madrakian T, Kamalabadi M. Application of magnetic ion imprinted polymers for simultaneous quantification of Al 3+ and Be 2+ ions using the mean centering of ratio spectra method. Talanta 2021; 225:122003. [PMID: 33592811 DOI: 10.1016/j.talanta.2020.122003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022]
Abstract
Magnetic solid-phase extraction (MSPE) coupled with the spectrophotometric method for the simultaneous quantification of aluminum and beryllium ions based on mean centering of ratio (MCR) method is reported in the current work, for the first time. Two new magnetic ion-imprinted polymers (MIIPs) were synthesized using Chrome Azurol S as the ligand, (3-aminopropyl)triethoxysilane (APTES) as the functional monomer, tetraethyl orthosilicate (TEOS) as the cross-linker, and aluminum and beryllium ions as the templates, and used as magnetic sorbents. The characteristic properties of MIIPs were investigated using FT-IR spectroscopy, field emission scanning electron microscopy (FE-SEM), low angle X-ray powder diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS). Through this study, factors influencing the MSPE were studied and optimized. The proposed method exhibited good performance, with the linearity of 5.0-50.0 ng mL-1 for aluminum ion and 2.0-40.0 ng mL-1 for beryllium ion as well as the detection limits (DLs) of 3.2 and 0.9 ng mL-1 for aluminum and beryllium ions, respectively. At the end of the study, the capability of the developed method for determination of target analytes was evaluated by its application in the tap and river water samples.
Collapse
Affiliation(s)
- Zahra Taheri
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | | | | |
Collapse
|