1
|
Rananaware P, Bauri S, Keri R, Mishra M, Brahmkhatri V. Polymeric curcumin nanospheres for lysozyme aggregation inhibition, antibacterial, and wound healing applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46625-46640. [PMID: 37688693 DOI: 10.1007/s11356-023-29160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
The present study reports highly stable polymeric nanoparticles comprising curcumin and polyvinylpyrrolidone, and then conjugated with gold nanoparticles, resulting in C-PVP and C-PVP-Au, respectively. The synthesized conjugates C-PVP and C-PVP-Au were investigated for amyloid aggregation inhibition activity, antimicrobial activity, and wound healing applications. The anti-amyloidogenic capacity of nanoconjugates were studied for model protein, hen egg-white lysozyme (HEWL). The ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates suppress fibrillogenesis in HEWL. The highest amyloid inhibition activity obtained against C-PVP and C-PVP-Au was 31 μg.mL-1 and 30 μg.mL-1, respectively. The dissociation activity for amyloid aggregation was observed against Q-PVP and Q-PVP-Au at 29 μg.mL-1 and 27 μg.mL-1, respectively. The antibacterial studies show significant efficacy against Escherichia coli (E. coli) in the presence of C-PVP and C-PVP-Au. The substantial antibacterial potential of C-PVP@PVA and C-PVP-Au@PVA membranes shows promising wound healing applications. The PVA membranes with nanoparticles promote the antibacterial activity and wound healing activity in the Drosophila model. C-PVP-Au@PVA membrane healed the wound faster than the C-PVP@PVA, and it can be used for better results in wound healing. Thus, C-PVP-Au and C-PVP have higher bioavailability and stability and can act as multifunctional therapeutic agents for amyloid-related diseases and as wound healing agents. Graphical abstract C-PVP, and C-PVP-Au conjugates for inhibition of HEWL aggregation, antibacterial and wound healing activity.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Samir Bauri
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Rangappa Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Varsha Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
2
|
Zhao X, Yang C, Liu W, Lu K, Yin H. Inhibition of insulin fibrillation by carboxyphenylboronic acid-modified chitosan oligosaccharide based on electrostatic interactions and hydrophobic interactions. Biophys Chem 2024; 310:107236. [PMID: 38615538 DOI: 10.1016/j.bpc.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
A novel inhibitor, carboxyphenylboronic acid-modified chitosan oligosaccharide (COS-CPBA), was developed by coupling carboxyphenylboronic acid (CPBA) with chitosan oligosaccharide (COS) to inhibit insulin fibrillation. Extensive biophysical assays indicated that COS-CPBA could decelerate insulin aggregation, hinder the conformational transition from α-helix to β-sheet structure, change the morphology of insulin aggregates and alter fibrillation pathway. A mechanism for the inhibition of insulin fibrillation by COS-CPBA was proposed. It considers that insulin molecules bind to COS-CPBA via hydrophobic interactions, while the positively charged groups in COS-CPBA exert electrostatic repulsion on the bound insulin molecules. These two opposite forces cause the insulin molecules to display extended conformations and hinder the conformational transition of insulin from α-helix to β-sheet structure necessary for fibrillation, thus decelerating aggregation and altering the fibrillation pathway of insulin. The studies provide novel ideas for the development of more effective inhibitors of amyloid fibrillation.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300401, China.
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300401, China
| | - Ke Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hao Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Li Z, Ekanayake AB, Bartman AE, Doorn JA, Tivanski AV, Pigge FC. Detection and disaggregation of amyloid fibrils by luminescent amphiphilic platinum(II) complexes. Dalton Trans 2024; 53:9001-9010. [PMID: 38726661 DOI: 10.1039/d4dt00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aβ42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.
Collapse
Affiliation(s)
- Zhuoheng Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | - Anna E Bartman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
4
|
Asgharzadeh S, Shareghi B, Farhadian S. Structural alterations and inhibition of lysozyme activity upon binding interaction with rotenone: Insights from spectroscopic investigations and molecular dynamics simulation. Int J Biol Macromol 2024; 254:127831. [PMID: 37935297 DOI: 10.1016/j.ijbiomac.2023.127831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
The pervasive employment of pesticides such as rotenone on a global scale represents a substantial hazard to human health through direct exposure. Therefore, exploring the interactions between such compounds and body macromolecules such as proteins is crucial in comprehending the underlying mechanisms of their detrimental effects. The present study aims to delve into the molecular interaction between rotenone and lysozyme by employing spectroscopic techniques along with Molecular dynamics (MD) simulation in mimicked physiological conditions. The binding interaction resulted in a fluorescence quenching characterized by both dynamic and static mechanisms, with static quenching playing a prominent role in governing this phenomenon. The analysis of thermodynamic parameters indicated that hydrophobic interactions primarily governed the spontaneous bonding process. FT-IR and circular dichroism findings revealed structural alternations of lysozyme upon complexation with rotenone. Also, complexation with rotenone declined the biological activity of lysozyme, thus rotenone could be considered an enzyme inhibitor. Further, the binding interaction substantially decreased the thermal stability of lysozyme. Molecular docking studies showed the binding location and the key residues interacting with rotenone. The findings of the spectroscopic investigations were confirmed and accurately supported by MD simulation studies.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
5
|
Gao X, Wang S, Dong J, Li J, Zhang Y, Wu Y, Ba X. Effect of mono- and diketone group in curcumin analogues on amyloid fibrillation of hen egg white lysozyme. Biophys Chem 2023; 292:106913. [PMID: 36330890 DOI: 10.1016/j.bpc.2022.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Curcumin has attracted more attention because of its inhibition efficacy on protein amyloid fibrillation. However, the inhibition mechanism was still ambiguous and the clinical application of curcumin was greatly limited because of its poor stability at physiological conditions for the presence of β-diketone moiety. In this paper, a new mono-ketone-containing curcumin analogue (MDHC) was designed and synthesized to realize the possible inhibition mechanism and unveil the important role of β-diketone moiety of curcumin in the inhibition process of amyloid fibrillation using hen egg white lysozyme (HEWL) as model protein. Although all experiment results (ThT, CR, ANS and TEM) showed that the inhibitory capacity of curcumin was better than MDHC, MDHC still could show obvious inhibition effect. Molecular docking showed that both curcumin and MDHC could bind with HEWL by hydrogen bond of phenloic hydroxyl and the binding energy of MDHC was higher than that of curcumin. All the findings inferred that β-diketone group was one of great important groups in the inhibition process of HEWL amyloid fibrillation, which provided more room to construct novel inhibition reagents.
Collapse
Affiliation(s)
- Xuejiao Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Jiawei Dong
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Jie Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, PR China
| | - Yuxia Wu
- Department of Computer Teaching, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China
| |
Collapse
|
6
|
Wang Y, Chen X, Xu X, Du M, Zhu B, Wu C. Disulfide bond-breaking induced structural unfolding and assembly of soy protein acting as a nanovehicle for curcumin. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Jain A, Kishore N. Micellar properties of pluronics in combination with cationic surfactant and interaction with lysozyme: Thermodynamic evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Singh D, Kaur L, Rahman AJ, Singh P, Kumar Tiwari A, Ojha H. Binding and mechanistic studies of 5-HT7 specific benzothiazolone derivatives with Bovine Serum Albumin: Spectroscopic and In silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Zaidi FK, Bhat R. Two polyphenols with diverse mechanisms towards amyloidosis: differential modulation of the fibrillation pathway of human lysozyme by curcumin and EGCG. J Biomol Struct Dyn 2022; 40:4593-4611. [DOI: 10.1080/07391102.2020.1860824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatima Kamal Zaidi
- Biophysical Chemistry Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajiv Bhat
- Biophysical Chemistry Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Kaur L, Rahman AJ, Singh A, Pathak M, Datta A, Singhal R, Ojha H. Binding studies for the interaction between hazardous organophosphorus compound phosmet and lysozyme: Spectroscopic and In-silico analyses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Chen Y, Liu Q, Yang F, Yu H, Xie Y, Yao W. Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. Int J Biol Macromol 2022; 200:151-161. [PMID: 34995654 DOI: 10.1016/j.ijbiomac.2021.12.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in various human diseases. However, more and more proteins, whether in human body or in food, have been found to be able to form amyloid fibrils with in-depth researches. As a model protein for amyloid research, lysozyme has always been the focus of research in various fields. Firstly, the formation mechanisms of amyloid fibrils are discussed concisely. Researches on the regulation of lysozyme amyloid fibrils are helpful to find suitable therapeutic drugs and unfriendly substances. And this review article summarizes a number of exogenous substances including small molecules, nanoparticles, macromolecules, and polymers. Small molecules are mainly connected to lysozyme through hydrophobic interaction, electrostatic interaction, π-π interaction, van der Waals force and hydrogen bond. Nanoparticles inhibit the formation of amyloid fibers by stabilizing lysozyme and fixing β-sheet. Besides, the applications of lysozyme amyloid fibrils in food-related fields are considered furtherly due to outstanding physical and mechanical properties. Nevertheless, the potential health threats are still worthy of our attention. Finally, we also give suggestions and opinions on the future research direction of lysozyme amyloid fibrils.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
12
|
Eze FN, Jayeoye TJ. Chromolaena odorata (Siam weed): A natural reservoir of bioactive compounds with potent anti-fibrillogenic, antioxidative, and cytocompatible properties. Biomed Pharmacother 2021; 141:111811. [PMID: 34153847 DOI: 10.1016/j.biopha.2021.111811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Protein fibrillation and oxidative damage are closely associated with the development of many chronic diseases such as Alzheimer's disease, Parkinson's disease and transthyretin amyloidoses. This work aimed at evaluating the fibrillogenic, antioxidant, anti-oxidative, hemolytic and cytotoxic activities of phenolic-rich extract from Chromolaena odorata (L) R.M. King & H. Rob aerial parts (COPE). As revealed by Thioflavin-T fluorescence, transmission electron microscopy, NBT redox cycling and ANS fluorescence analyses, COPE suppressed the fibril formation of hen egg-white lysozyme by directly binding to the protein and preventing surface exposure its of hydrophobic clusters. In addition, COPE demonstrated potent radical scavenging activities against DPPH˙ and ABTS˙+, chelated ferrous ions, and inhibited metal-catalyzed oxidation of bovine serum albumin. The observed effects could be explained by the high content of flavonoids (22.82 QE/g) and phenolics (190 mg GAE/g) present in COPE. UHPLC-ESI-QTOF-MS/MS analysis of COPE in negative ionization mode revealed that the predominant compounds were phenolics and terpenoids. Furthermore, COPE was found to exert very minimal cytotoxic effects against human red blood cells (≤ 5% hemolysis) and human embryonic kidney (HEK-293) cells (≥ 80% viability). These findings suggested that with further investigations, phenolic-rich extract from C odorata could be effectively valorized for pharmacological applications against protein fibrillogenic and oxidative damage related conditions.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| |
Collapse
|
13
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
14
|
Ali MS, Waseem M, Subbarao N, Al-Lohedan HA. Dynamic interaction between lysozyme and ceftazidime: Experimental and molecular simulation approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Zeng HJ, Wang SS, Sun LJ, Miao M, Yang R. Investigation on the effect of three isoflavones on the fibrillation of hen egg-white lysozyme. J Mol Recognit 2021; 34:e2889. [PMID: 33646596 DOI: 10.1002/jmr.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022]
Abstract
In this paper, the effects of three isoflavones including daidzein, genistein, and puerarin on fibrillation of hen egg-white lysozyme were investigated by various analytical methods. The results demonstrated that all isoflavones could effectively inhibit the fibrillogenesis of hen egg-white lysozyme and destabilized the preformed fibrils of hen egg-white lysozyme in a dose-dependent manner. To further understand the inhibition mechanism, molecular modeling was carried out. The docking results demonstrated that the isoflavones could bind to two key fibrogenic sites in hen egg-white lysozyme through van der Waals force, electrostatic forces, and hydrogen bonding, as well as σ-π stacking. By these means, isoflavones could not only obviously enhance the hydrophobicity of the binding sites, but also greatly stabilize the native state of HEWL, which was able to postpone the fibrosis process of hen egg-white lysozyme.
Collapse
Affiliation(s)
- Hua-Jin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sha-Sha Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Jun Sun
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| | - Min Miao
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| | - Ran Yang
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Kannamangalam Vijayan U, Shah NN, Muley AB, Singhal RS. Complexation of curcumin using proteins to enhance aqueous solubility and bioaccessibility: Pea protein vis-à-vis whey protein. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
18
|
Wang M, Wang S, Li B, Tian Y, Zhang H, Bai L, Ba X. Synthesis of linear polyglucoside and inhibition on the amyloid fibril formation of hen egg white lysozyme. Int J Biol Macromol 2020; 166:771-777. [PMID: 33157132 DOI: 10.1016/j.ijbiomac.2020.10.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
A novel polymer poly (6-O-MMAGlc) has been synthesized via free radical polymerization of monomer methyl 6-O-methacryloyl-α-D-glucoside (6-O-MMAGlc) and characterized. The influence of poly(6-O-MMAGlc) on the formation of hen egg white lysozyme (HEWL) amyloid fibril was detailly investigated, indicating that the polymer could effectively inhibit the formation of HEWL amyloid fibril. The formation kinetics of HEWL amyloid fibril with the presence of poly(6-O-MMAGlc) was measured by Thioflavin T (ThT) fluorescence method, demonstrating that poly(6-O-MMAGlc) could significantly inhibit the amyloid fibril formation of HEWL in a dose-dependent manner. The inhibitory result was furtherly illustrated by congo red (CR) binding assay, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism (CD) spectroscopy and transmission electron microscope (TEM).
Collapse
Affiliation(s)
- Mengna Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Benye Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yuelan Tian
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Haisong Zhang
- No. 212 Yuhuadonglu, Department of Nephrology, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China.
| |
Collapse
|
19
|
Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. Int J Biol Macromol 2020; 162:1526-1535. [DOI: 10.1016/j.ijbiomac.2020.07.297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022]
|
20
|
Kumari A, Muthu SA, Prakash P, Ahmad B. Herbalome of Chandraprabha vati, a polyherbal formulation of Ayurveda prevents fibrillation of lysozyme by stabilizing aggregation-prone intermediate state. Int J Biol Macromol 2020; 148:102-109. [DOI: 10.1016/j.ijbiomac.2020.01.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
|
21
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. Int J Mol Sci 2020; 21:ijms21061975. [PMID: 32183162 PMCID: PMC7139886 DOI: 10.3390/ijms21061975] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Worldwide, Alzheimer’s disease (AD) is the most common neurodegenerative multifactorial disease influencing the elderly population. Nowadays, several medications, among them curcumin, are used in the treatment of AD. Curcumin, which is the principal component of Curcuma longa, has shown favorable effects forsignificantly preventing or treating AD. During the last decade, the scientific community has focused their research on the optimization of therapeutic properties and on the improvement of pharmacokinetic properties of curcumin. This review summarizes bibliographical data from 2009 to 2019 on curcumin analogues, derivatives, and hybrids, as well as their therapeutic, preventic, and diagnostic applications in AD. Recent advances in the field have revealed that the phenolic hydroxyl group could contribute to the anti-amyloidogenic activity. Phenyl methoxy groups seem to contribute to the suppression of amyloid-β peptide (Aβ42) and to the suppression of amyloid precursor protein (APP) andhydrophobic interactions have also revealed a growing role. Furthermore, flexible moieties, at the linker, are crucial for the inhibition of Aβ aggregation. The inhibitory activity of derivatives is increased with the expansion of the aromatic rings. The promising role of curcumin-based compounds in diagnostic imaging is highlighted. The keto-enol tautomerism seems to be a novel modification for the design of amyloid-binding agents. Molecular docking results, (Q)SAR, as well as in vitro and in vivo tests highlight the structures and chemical moieties that are correlated with specific activity. As a result, the knowledge gained from the existing research should lead to the design and synthesis ofinnovative and multitargetedcurcumin analogues, derivatives, or curcumin hybrids, which would be very useful drug and tools in medicine for both diagnosis and treatment of AD.
Collapse
|
22
|
Kalhor HR, Jabbary M. Investigating Reliable Conditions for HEWL as an Amyloid Model in Computational Studies and Drug Interactions. J Chem Inf Model 2019; 59:5218-5229. [DOI: 10.1021/acs.jcim.9b00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155 Tehran, Iran
| | - Mohammadparsa Jabbary
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155 Tehran, Iran
| |
Collapse
|