1
|
Coke K, Johnson MJ, Robinson JB, Rettie AJE, Miller TS, Shearing PR. Illuminating Polysulfide Distribution in Lithium Sulfur Batteries; Tracking Polysulfide Shuttle Using Operando Optical Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38598420 PMCID: PMC11056927 DOI: 10.1021/acsami.3c14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
High-energy-density lithium sulfur (Li-S) batteries suffer heavily from the polysulfide shuttle effect, a result of the dissolution and transport of intermediate polysulfides from the cathode, into the electrolyte, and onto the anode, leading to rapid cell degradation. If this primary mechanism of cell failure is to be overcome, the distribution, dynamics, and degree of polysulfide transport must first be understood in depth. In this work, operando optical fluorescence microscope imaging of optically accessible Li-S cells is shown to enable real-time qualitative visualization of the spatial distribution of lithium polysulfides, both within the electrolyte and porous cathode. Quantitative determinations of spatial concentration are also possible at a low enough concentration. The distribution throughout cycling is monitored, including direct observation of polysulfide shuttling to the anode and consequent dendrite formation. This was enabled through the optimization of a selective fluorescent dye, verified to fluoresce proportionally with concentration of polysulfides within Li-S cells. This ability to directly and conveniently track the spatial distribution of soluble polysulfide intermediates in Li-S battery electrolytes, while the cell operates, has the potential to have a widespread impact across the field, for example, by enabling the influence of a variety of polysulfide mitigation strategies to be assessed and optimized, including in this work the LiNO3 additive.
Collapse
Affiliation(s)
- Kofi Coke
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Michael J. Johnson
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - James B. Robinson
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 ORA, U.K.
- Advanced
Propulsion Lab, UCL East, University College
London, London E15 2JE, U.K.
| | - Alexander J. E. Rettie
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 ORA, U.K.
- Advanced
Propulsion Lab, UCL East, University College
London, London E15 2JE, U.K.
| | - Thomas S. Miller
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 ORA, U.K.
| | - Paul R. Shearing
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 ORA, U.K.
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Kumar GD, Liao YC, Nazir R, Banasiewicz M, Chou PT, Gryko DT. Strongly emitting, centrosymmetric, ladder-type bis-coumarins with crankshaft architecture. Phys Chem Chem Phys 2023; 25:28824-28828. [PMID: 37853830 DOI: 10.1039/d3cp04121b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Quadrupolar bis-coumarins bearing dialkylamino groups, prepared by a double Pechmann reaction and subsequent oxidation, strongly emit yellow-orange light. Comparison with non-substituted analogs reveals that, the photophysical properties of the conjugated bis-coumarins are controlled both by the dialkylamino substituents and by the π-system. Analogous but non-conjugated bis-coumarins emit blue light both in solution and in crystalline state. Unusually fast oxidation process in the crystalline state is responsible for the presence of two bands in their solid-state emission. Two-center, charge-transfer transition from an orbital delocalized on the entire molecule to the central benzene ring is responsible for photophysical properties.
Collapse
Affiliation(s)
- G Dinesh Kumar
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Yu-Chan Liao
- Department of Chemistry, National Taiwan University, 1 Roosevelt Road Section 4, Taipei 106, Taiwan.
| | - Rashid Nazir
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
- Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, 1 Roosevelt Road Section 4, Taipei 106, Taiwan.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
4
|
Kielesiński Ł, Deperasińska I, Morawski O, Vygranenko KV, Ouellette ET, Gryko DT. Polarized, V-Shaped, and Conjoined Biscoumarins: From Lack of Dipole Moment Alignment to High Brightness. J Org Chem 2022; 87:5961-5975. [PMID: 35410474 PMCID: PMC9087199 DOI: 10.1021/acs.joc.2c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Eleven conjoined
coumarins possessing a chromeno[3,4-c]chromene-6,7-dione
skeleton have been synthesized via the reaction
of electron-rich phenols with esters of coumarin-3-carboxylic acids,
catalyzed by either Lewis acids or 4-dimethylaminopyridine. Furthermore,
Michael-type addition to angular benzo[f]coumarins
is possible, leading to conjugated helical systems. Arrangement of
the electron-donating amino groups at diverse positions on this heterocyclic
skeleton makes it possible to obtain π-expanded coumarins with
emission either sensitive to, or entirely independent of, solvent
polarity with large Stokes shifts. Computational studies have provided
a rationale for moderate solvatochromic effects unveiling the lack
of collinearity of the dipole moments in the ground and excited states.
Depending on the functional groups present, the obtained dyes are
highly polarized with dipole moments of ∼14 D in the ground
state and ∼20–25 D in the excited state. Strong emission
in nonpolar solvents, in spite of the inclusion of a NO2 group, is rationalized by the fact that the intramolecular charge
transfer introduced into these molecules is strong enough to suppress
intersystem crossing yet weak enough to prevent the formation of dark
twisted intramolecular charge transfer states. Photochemical transformation
of the dye possessing a chromeno[3,4-c]pyridine-4,5-dione
scaffold led to the formation of a spirocyclic benzo[g]coumarin.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Olaf Morawski
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Kateryna V Vygranenko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel T Gryko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Wang D, Ma Z, Xi J, Wang N, Wang T, Liang Y, zhang Z. Synthesis of V‐shaped bis‐coumarins via Aldol reaction/double Lactonization cascade reaction from bis(2‐hydroxyphenyl)methanone and Meldrum's acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ding Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhishuang Ma
- Shaanxi Normal University Basic Experimental Teaching Center CHINA
| | - Jin Xi
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Nana Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Tao Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong Liang
- Beckman Research Institute Department of molecular medicine CHINA
| | - zunting zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering West Chang'an Avenue, Chang'an District 710119 xi'an CHINA
| |
Collapse
|
6
|
Liu FL, Yuchi XX, Zhang MH, Huang J, Hu XW, Man RJ. A fluorescent probe derived from Berberrubine for detecting hydrogen polysulfide in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120491. [PMID: 34653849 DOI: 10.1016/j.saa.2021.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, we chose the fluorophore Berberrubine to develop a selective probe for hydrogen polysulfide (H2Sn), and applied it into the detection in both food samples and living cells. The developed probe, HER9SS, suggested practical steadiness and serviceability, especially for multi-scene detection. The detecting system was stable in relatively wide pH (7.0-11.0) and temperature (25-45 °C) ranges. Both the storage of BER9SS in solid or in solution could maintain the steadiness over 7 d. BER9SS also indicated advantages including rapid response (within 15 min), high sensitivity (LOD = 0.02 μM; LOQ = 0.01 μM), long linear range (0-15.0 equivalent) and high selectivity among competing analytes. The recovery ranging in 95.23% - 104.8% in the applications in food sources samples (including water and plants) and food samples inferred the practical potential of BER9SS. In biological imaging, BER9SS could achieve both the dose-dependent monitoring and the β-lapachone-induced generation of H2Sn. Therefore, the information in this work might be useful for the development of fluorescent probes from natural products for multi-scene applications in future, especially with the corresponding attentions on the practicability and serviceability.
Collapse
Affiliation(s)
- Fu-Ling Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Xue-Xian Yuchi
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Mei-Hui Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Ruo-Jun Man
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
7
|
Niu P, Rong Y, Wang Y, Ni H, Zhu M, Chen W, Liu X, Wei L, Song X. A bifunctional fluorescent probe for simultaneous detection of GSH and H 2S n (n > 1) from different channels with long-wavelength emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119789. [PMID: 33892246 DOI: 10.1016/j.saa.2021.119789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
In this work, we presented a long-wavelength emission fluorescent probe DCM-Cou-SePh that can discriminatively detect glutathione (GSH) and hydrogen polysulfides (H2Sn, n > 1) from green and red emission channels, respectively. With the addition of GSH, probe DCM-Cou-SePh displayed green fluorescence emission (λex/em = 430/530 nm). In the presence of H2Sn, the probe exhibited a significant fluorescence enhancement in red channel (λex/em = 560/680 nm). We also demonstrated that this probe was suitable to quantitatively detect GSH and H2Sn with low detection limits (0.12 μM for GSH, 0.19 μM for H2Sn). Furthermore, DCM-Cou-SePh can be used for sensing endogenous GSH and H2Sn in living cells by dual-color fluorescence imaging.
Collapse
Affiliation(s)
- Peixin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yifan Rong
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yuyue Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Huijie Ni
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Minghui Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, Guangxi Province, China
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| | - Liuhe Wei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China
| |
Collapse
|
8
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Hu Q, Gong T, Mao Y, Yin Q, Wang Y, Wang H. Two-phase activated colorimetric and ratiometric fluorescent sensor for visual detection of phosgene via AIE coupled TICT processes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119589. [PMID: 33636495 DOI: 10.1016/j.saa.2021.119589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we specifically designed and synthesized an excellent colorimetric and ratiometric fluorescent sensor DPA-CI for rapid and convenient detection of the highly toxic phosgene. DPA-CI was developed by incorporated a diphenylamine (DPA) and a 2-imine-3-benzo[d]imidazole as the enhanced push-pull electronic structure into the coumarin fluorophore matrix. The sensor DPA-CI towards phosgene sensing exhibited both visible colorimetric and ratiometric fluorescent color change in solution and in gaseous conditions with TICT and AIE mechanism respectively, which can be easily distinguished by using the naked eye. Also, the sensor DPA-CI showed splendid sensing performance such as excellent selectivity, rapid response (less than 8 s in THF and 2 min in gaseous condition), and fair sensitivity (limit of detection less than 0.11 ppm in gaseous condition and 0.27 μM in solution). The design strategy based on enhanced push-pull electronic structure with AIE and TICT properties will be helpful to construct a solid optical sensor with excellent potential application prospects for portable and visual sensing of gaseous phosgene through distinct color and ratiometric fluorescence change by the naked eyes.
Collapse
Affiliation(s)
- Qinghua Hu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China.
| | - Tao Gong
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Yu Mao
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Qiang Yin
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Yuyuan Wang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
10
|
Ma Y, Xu Z, Sun Q, Wang L, Liu H, Yu F. A semi-naphthorhodafluor-based red-emitting fluorescent probe for tracking of hydrogen polysulfide in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119105. [PMID: 33161265 DOI: 10.1016/j.saa.2020.119105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen polysulfides (H2Sn, n ≥ 2) is recently regarded as a potential signaling molecule which shows a higher efficiency than hydrogen sulfides (H2S) in regulating enzymes and ion channels. However, the development of specific fluorescent probes for H2Sn with long-wavelength emission (>600 nm) are still rare. In this work, a semi-naphthorhodafluor-based red-emitting fluorescent probe SNARF-H2Sn containing a phenyl 2-(benzoylthio) benzoate responsive unit was constructed. SNARF-H2Sn was capable of selectively detecting H2Sn over other reactive sulfur species. Treatment with H2Sn would result in a > 1000-fold fluorescence enhancement within 10 min. SNARF-H2Sn showed a low limit of detection down to 6.7 nM, and further enabled to visualize exogenous/endogenous H2Sn in living A549 cells and zebrafish.
Collapse
Affiliation(s)
- Yingying Ma
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhencai Xu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Linlin Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
11
|
Hu Q, Zhang W, Yin Q, Wang Y, Wang H. A conjugated fluorescent polymer sensor with amidoxime and polyfluorene entities for effective detection of uranyl ion in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118864. [PMID: 32889338 DOI: 10.1016/j.saa.2020.118864] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
It is an important challenge to develop a chemosensor for trace uranyl ion in an aqueous medium for sustainable development of nuclear energy and environmental conservation. A conjugated fluorescent polymer sensor P2 based on amidoxime groups and polyfluorene, which showed good hydrophilous resulting adequate contact with uranyl ions and selectivity and sensitivity even in the presence of other metal ions in DMA/H2O (v/v = 20:80, pH = 6.0) solution, for uranyl ion was designed and prepared in this work. And it possesses good thermal stability and a larger Stokes shift (108 nm). Importantly, the fluorescence quenching occurred when P2 combining uranium. It had a good linear relationship with UO22+ concentration in the range of 10 to 200 nM with a fairly low LOD 7.4 × 10-9 M. Interaction properties between the sensor P2 and UO22+ and the fluorescent mechanism were investigated by density functional theory (DFT). More importantly, the sensor can be successfully used for the detection of uranyl ion in environmental solutions. This work suggests that conjugated fluorescent polymer with amidoxime groups will be a prospective sensor of uranyl ion in the environmental sample.
Collapse
Affiliation(s)
- Qinghua Hu
- School of Chemistry and Chemical Engineering, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Wenfeng Zhang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Qiang Yin
- School of Chemistry and Chemical Engineering, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Yuyuan Wang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Hongqing Wang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
12
|
Zhang F, Han J, Wang J, Li X, Wang Y, Wang B, Song X. A near-infrared fluorescent probe for hydrogen polysulfides detection with a large Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118755. [PMID: 32795951 DOI: 10.1016/j.saa.2020.118755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Due to the crucial biological roles of hydrogen polysulfides (H2Sn) in living systems, the selective determination of H2Sn is essential. In this work, we reported a turn-on fluorescent probe, JSI-Sn, for H2Sn with high sensitivity and good selectivity. Probe JSI-Sn displayed a near-infrared emission (λmaxEm = 701 nm) and a large Stokes shift (123 nm) in the presence of H2Sn in solution. Using probe JSI-Sn as an indispensable tool, the monitoring of intracellular H2Sn in living cells and zebrafish were realized.
Collapse
Affiliation(s)
- Fan Zhang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jinliang Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
13
|
A fluorescent probe for discrimination of cysteine/homocysteine, glutathione and hydrogen polysulfides. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04320-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|