1
|
A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch. Molecules 2023; 28:molecules28052341. [PMID: 36903586 PMCID: PMC10005410 DOI: 10.3390/molecules28052341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A novel aptamer-based fluorescent-sensing platform with a triple-helix molecular switch (THMS) was proposed as a switch for detecting the arsenic(III) ion. The triple helix structure was prepared by binding a signal transduction probe and arsenic aptamer. Additionally, the signal transduction probe labeled with fluorophore (FAM) and quencher (BHQ1) was employed as a signal indicator. The proposed aptasensor is rapid, simple and sensitive, with a limit of detection of 69.95 nM. The decrease in peak fluorescence intensity shows a linear dependence, with the concentration of As(III) in the range of 0.1 µM to 2.5 µM. The whole detection process takes 30 min. Moreover, the THMS-based aptasensor was also successfully used to detect As(III) in a real sample of Huangpu River water with good recoveries. The aptamer-based THMS also presents distinct advantages in stability and selectivity. The proposed strategy developed herein can be extensively applied in the field of food inspection.
Collapse
|
2
|
Ning Y, Wang X, Liu S, Li L, Lu F. A graphene-oxide-based aptasensor for fluorometric determination of chloramphenicol in milk and honey samples utilizing exonuclease III-assisted target recycling and Nb.BbvCI-powered DNA walker cascade amplification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114449. [PMID: 38321668 DOI: 10.1016/j.ecoenv.2022.114449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Herein, a graphene oxide (GO)-based fluorescence aptasensor was developed for the sensitive and selective detection of chloramphenicol (CAP), based on exonuclease III (Exo III)-assisted target recycling and Nb.BbvCI-driven DNA walker cascade amplification. Interactions between CAP, hairpin1(HP1), hairpin2 (HP2), and 3'-amino modified hairpin3 (HP3) labeled with carboxyfluorescein (FAM) and covalently coupled to GO enabled efficient CAP detection. CAP was quantitatively assayed by measuring fluorescence at excitation/emission wavelengths of 480/514 nm, resulting from the accumulation of released FAM. A good linear range of 1 fM to 1 nM and a limit of detection (LOD) of 0.875 fM (signal-to-noise (S/N)= 3) were achieved. This aptasensor can distinguish the CAP from interference antibiotics with good specificity and selectivity, even if the concentration of the interfering substance is ten-fold higher than the target concentration. Moreover, the developed fluorescence aptasensor was successfully applied for the detection of CAP in spiked milk and honey samples. Thus, this method is potentially applicable for assaying CAP in foods and provides a promising strategy for the development of fluorescence aptasensors for environmental sample analysis.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Ling Li
- Experimental Center of molecular biology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
3
|
Yao J, Zeng X. Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol. Mikrochim Acta 2022; 190:18. [PMID: 36495321 DOI: 10.1007/s00604-022-05573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Nanosheets of anatase TiO2 and CdS quantum dots modified with thioglycolic acid (TGA-CdS QDs) were prepared and hierarchically modified on the indium tin oxides (ITO) electrodes. The heterojunction structure is formed to improve the light capture ability and carrier migration, significantly enhancing the sensitivity of photoelectrochemical (PEC) biosensors. Specific DNA sequences labeled with TGA-CdS QDs were placed on the electrodes to prepare a biosensor for the detection of chloramphenicol with ultrahigh selectivity. In addition, the heterojunction structure and the principle of photocurrent signal amplification on the electrode are described in detail. Under the optimal conditions, the photoelectrochemical biosensors showed good reproducibility and stability for chloramphenicol with a linear response in the range 10-10,000 pM and a limit of detection (LOD) of 0.23 pM. Due to the specific recognition of base pairs, the sensor has excellent anti-interference ability in practical applications. An effective method was developed for the accurate detection of antibiotics with far reaching prospects.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Xiang Zeng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
4
|
Highly sensitive and efficient fluorescent sensing for Hg2+ detection based on triple-helix molecular switch and exonuclease III-assisted amplification. Anal Chim Acta 2022; 1205:339751. [DOI: 10.1016/j.aca.2022.339751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
|
5
|
Flexible photoelectrochemical sensor for highly sensitive chloramphenicol detection based on M-TiO2-CdTe QDs/CdS QDs composite. Anal Bioanal Chem 2022; 414:2065-2078. [DOI: 10.1007/s00216-021-03840-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
6
|
Mehedi Hassan M, He P, Xu Y, Zareef M, Li H, Chen Q. Rapid detection and prediction of chloramphenicol in food employing label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration. Food Chem 2021; 374:131765. [PMID: 34896956 DOI: 10.1016/j.foodchem.2021.131765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Considering growing food safety issues, hollow Au/Ag nano-flower (HAu/Ag NFs) nanosensor has been synthesized for label-free and ultrasensitive detection of chloramphenicol (CP) via integrating the surface-enhanced Raman scattering (SERS) and multivariate calibration. As the anisotropic plasmonic nanomaterials, HAu/Ag NFs had numerous nano-chink on their surface, which offered huge hotspots for analytes. CP generated a strong SERS signal while adsorbed on the surface of HAu/Ag NFs and noted excellent linearity with 1st derivative-competitive adaptive reweighted sampling-partial least squares (CARS-PLS) in the range of 0.0001-1000 µg/mL among the four applied multivariate calibrations. Additionally, CARS-PLS generated the lowest prediction error (RMSEP) of 0.089 and 0.123 µg/mL for milk and water samples, respectively, and any CARS-PLS model could be used for both samples according to T-test results (P > 0.05). The intra- and interday recovery for both samples were in the range of 92.62-96.74% with CV < 10%, suggested the proposed method has excellent accuracy and precision.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
7
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Wang S, He B, Liang Y, Jin H, Wei M, Ren W, Suo Z, Wang J. Exonuclease III-Driven Dual-Amplified Electrochemical Aptasensor Based on PDDA-Gr/PtPd@Ni-Co Hollow Nanoboxes for Chloramphenicol Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26362-26372. [PMID: 34038999 DOI: 10.1021/acsami.1c04257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, a hierarchically porous Zr-MOF-labeled electrochemical aptasensor based on the composite of PtPd@Ni-Co hollow nanoboxes (PtPd@Ni-Co HNBs) and poly (diallyldimethylammonium chloride)-functionalized graphene (PDDA-Gr) was developed for ultrasensitive detection of chloramphenicol (CAP). PtPd@Ni-Co HNBs have excellent conductivity and provide binding sites for aptamers; the functionalized PDDA-Gr improves its dispersibility and conductivity as a substrate material, which can be successfully used to increase the electrode surface area and support more PtPd@Ni-CoHNBs. Besides, hierarchically porous Zr-MOFs (HP-UiO-66) were utilized as signal probes and showed a stronger load capacity for signal molecules than conventional UiO-66. In the presence of CAP, two ingeniously designed Exo III-assisted cyclic amplification strategies further improved the sensitivity of the aptasensor: CAP causes cycle I to release a large amount of trigger DNA (Tr DNA), and then, Tr DNA initiated cycle II, which causes the exposed capture DNA to further bind the signal probes. With these advantages, the constructed aptasensors performed with satisfactory sensitivity in a wide linear range (10 fM-10 nM) and a detection limit of 0.985 fM. Several signal amplification strategies adopted in this study have effectively improved the performance of the sensor, providing a new avenue for the development of ultrasensitive sensors in the food analysis field.
Collapse
Affiliation(s)
- Senyao Wang
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| |
Collapse
|
9
|
The electro-catalytic activity of nanosphere strontium doped zinc oxide with rGO layers screen-printed carbon electrode for the sensing of chloramphenicol. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chem Toxicol 2020; 146:111806. [PMID: 33039435 DOI: 10.1016/j.fct.2020.111806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Chloramphenicol (CLP) is a veterinary antibiotic that has been banned due to its severe side effects but it is still illegally used in animal husbandry. In this work, the fabrication of simple, fast-response and highly selective ratiometric probe for sensitive visual detection of CLP antibiotic at trace levels in both indoor and outdoor is reported. For the construction of the ratiometric fluorescence probe (mMIP@YBCDs), two kinds of different carbon dots with yellow emission (Y/CDs, 560 nm) and blue emission carbon dots (B/CDs, 440 nm) were used as target sensitive and as reference dyes respectively. Besides, molecularly imprinted mesoporous silica was used as a recognized part of the probe. Upon the addition of different concentrations of CLP, the fluorescence of Y/CDs was quenched significantly while the fluorescence intensity of B/CDs stayed constant which was accompanied by gradual fluorescence color change from yellow-to-blue. The ratiometric probe has a linear response in the range of 0.1-3 μgL-1 with a detection limit 0.035 μgL-1. The practicality of the ratiometric method was validated by the quantification of CLP in milk samples.
Collapse
|
11
|
The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues in Food Products. BIOSENSORS-BASEL 2020; 10:bios10030021. [PMID: 32138274 PMCID: PMC7146278 DOI: 10.3390/bios10030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
The presence of antimicrobial residues in food-producing animals can lead to harmful effects on the consumer (e.g., allergies, antimicrobial resistance, toxicological effects) and cause issues in food transformation (i.e., cheese, yogurts production). Therefore, to control antimicrobial residues in food products of animal origin, screening methods are of utmost importance. Microbiological and immunological methods (e.g., ELISA, dipsticks) are conventional screening methods. Biosensors are an innovative solution for the development of more performant screening methods. Among the different kinds of biosensing elements (e.g., antibodies, aptamers, molecularly imprinted polymers (MIP), enzymes), aptamers for targeting antimicrobial residues are in continuous development since 2000. Therefore, this review has highlighted recent advances in the development of aptasensors, which present multiple advantages over immunosensors. Most of the aptasensors described in the literature for the detection of antimicrobial residues in animal-derived food products are either optical or electrochemical sensors. In this review, I have focused on optical aptasensors and showed how nanotechnologies (nanomaterials, micro/nanofluidics, and signal amplification techniques) largely contribute to the improvement of their performance (sensitivity, specificity, miniaturization, portability). Finally, I have explored different techniques to develop multiplex screening methods. Multiplex screening methods are necessary for the wide spectrum detection of antimicrobials authorized for animal treatment (i.e., having maximum residue limits).
Collapse
|
12
|
An anti-BSA antibody-based immunochromatographic assay for chloramphenicol and aflatoxin M1 by using carboxy-modified CdSe/ZnS core–shell nanoparticles as label. Mikrochim Acta 2019; 187:10. [DOI: 10.1007/s00604-019-4009-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
|