1
|
Dastgheib ZS, Abolmaali SS, Farahavar G, Salmanpour M, Tamaddon AM. Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications. Heliyon 2024; 10:e35655. [PMID: 39170173 PMCID: PMC11336847 DOI: 10.1016/j.heliyon.2024.e35655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.
Collapse
Affiliation(s)
- Zahra Sadat Dastgheib
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research Center, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| |
Collapse
|
2
|
Slapničar Š, Žerjav G, Zavašnik J, Roškarič M, Finšgar M, Pintar A. Novel TiO 2-Supported Gold Nanoflowers for Efficient Photocatalytic NO x Abatement. Molecules 2024; 29:3333. [PMID: 39064911 PMCID: PMC11279453 DOI: 10.3390/molecules29143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we pioneered the synthesis of nanoflower-shaped TiO2-supported Au photocatalysts and investigated their properties. Au nanoflowers (Au NFs) were prepared by a Na-citrate and hydroquinone-based preparation method, followed by wet impregnation of the derived Au NFs on the surface of TiO2 nanorods (TNR). A uniform and homogeneous distribution of Au NFs was observed in the TNR + NF(0.7) sample (lower Na-citrate concentration), while their distribution was heterogeneous in the TNR + NF(1.4) sample (higher Na-citrate concentration). The UV-Vis DR spectra revealed the size- and shape-dependent optical properties of the Au NFs, with the LSPR effect observed in the visible region. The solid-state EPR spectra showed the presence of Ti3+, oxygen vacancies and electron interactions with organic compounds on the catalyst surface. In the case of the TNR + NF(0.7) sample, high photocatalytic activity was observed in the H2-assisted reduction of NO2 to N2 at room temperature under visible-light illumination. In contrast, the TNR + NF(1.4) catalyst as well as the heat-treated samples showed no ability to reduce NO2 under visible light, indicating the presence of deformed Au NFs limiting the LSPR effect. These results emphasized the importance of the choice of synthesis method, as this could strongly influence the photocatalytic activity of the Au NFs.
Collapse
Affiliation(s)
- Špela Slapničar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia; (Š.S.); (G.Ž.); (M.R.)
| | - Gregor Žerjav
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia; (Š.S.); (G.Ž.); (M.R.)
| | - Janez Zavašnik
- Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Matevž Roškarič
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia; (Š.S.); (G.Ž.); (M.R.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Albin Pintar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia; (Š.S.); (G.Ž.); (M.R.)
| |
Collapse
|
3
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
4
|
Osonga FJ, Eshun GB, Sadik OA. Ligand effect on controlling the synthesis of branched gold nanomaterials against fusarium wilt diseases. RSC Adv 2022; 12:31855-31868. [PMID: 36380935 PMCID: PMC9639171 DOI: 10.1039/d2ra05478g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 07/22/2023] Open
Abstract
The widespread wilt disease caused by Fusarium solani spp is a pressing problem affecting crop production and intensive farming. Strategic biocontrol of Fusarium solani spp using phytochemical mediated nano-materials is eco-friendly compared to harsh synthetic fungicides. The present study demonstrates the comparative dose effects of QPABA-derived branched gold nanomaterial (AuNF) and quercetin-mediated spherical gold nanoparticles (s-AuNPs) against Fusarium solani spp. Quercetin-para aminobenzoic acid (QPABA) was synthesized using reductive amination by reacting para-aminobenzoic acid with quercetin in an eco-friendly solvent at 25 °C. The structure elucidation was confirmed using 1H and 13C-NMR. TLC analysis showed that QPABA (R f = 0.628) was more polar in water than quercetin (R f = 0.714). The as-synthesized QPABA serves as a reducing and capping agent for the synthesis of gold nanoflowers (AuNFs) and gold nanostars (AuNSs). The UV-vis, XRD, and TEM confirmed the SPR peak of gold (550 nm) and gold element with a particle size distribution of 20-80 nm for the nanostars respectively. AuNFs exhibited a significant (P < 0.05) inhibitory effect against F. solani in a dose-dependent manner using Agar well diffusion. Nevertheless, spherical-AuNPs were not effective against F. solani. The inhibitory effect was influenced by the size, dose treatment, and particle shape. The minimum inhibitory concentration (MIC) value of AuNFs was 125.7 ± 0.22 μg mL-1. Our results indicate that AuNFs show considerable antifungal activity against F. solani as compared to spherical AuNPs. This study shows a greener synthesis of gold anisotropic nanostructures using QPAB, which holds promise for the treatment of fungal pathogens impacting agricultural productivity.
Collapse
Affiliation(s)
- Francis J Osonga
- BioSensor Materials for Advanced Research and Technology (The BioSMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights 161 Warren Street Newark NJ 07102 USA
| | - Gaddi B Eshun
- BioSensor Materials for Advanced Research and Technology (The BioSMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights 161 Warren Street Newark NJ 07102 USA
| | - Omowunmi A Sadik
- BioSensor Materials for Advanced Research and Technology (The BioSMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights 161 Warren Street Newark NJ 07102 USA
| |
Collapse
|
5
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
6
|
Zhou X, Ge S, Sun Y, Ran M, Liu Y, Mao Y, Cao X. Highly sensitive SERS assay of genetically modified organisms in maize via a nanoflower substrate coupled with hybridization chain reaction amplification. NEW J CHEM 2021. [DOI: 10.1039/d1nj03913j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biosensor based on a high-density “hot spot” SERS substrate coupled with HCR amplification strategy was developed for the ultrasensitive detection of genetically modified organisms in maize.
Collapse
Affiliation(s)
- Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Menglin Ran
- The First Clinical College, Dalian Medical University, Dalian, P. R. China
| | - Yifan Liu
- The First Clinical College, Dalian Medical University, Dalian, P. R. China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|