Rabah F, Chmaisani W, Younes G, El-Kork N, Korek M. Theoretical spin-orbit laser cooling for AlZn molecule.
J Chem Phys 2024;
161:154305. [PMID:
39422206 DOI:
10.1063/5.0232515]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
A spin-orbit coupling electronic structure study of the AlZn molecule is conducted to investigate the molecular properties of the low-lying electronic states and their feasibility toward direct laser cooling. This study uses the complete active-space self-consistent field level of theory, followed by the multireference configuration interaction method with Davidson correction (+Q). The potential energy and dipole moment curves and the spectroscopic constants are computed for the low-lying doublet and quartet electronic states in the 2S+1Λ± and Ω(±) representations. The transition dipole moments, the Franck-Condon factors, the Einstein coefficient, the radiative lifetimes, the vibrational branching ratio, and the slowing distance are determined between the lowest spin-orbit bound electronic states. These results show that the molecule AlZn has a high potential for laser cooling through the X2Π1/2 → (2)2Π1/2 transition by utilizing four lasers at a wavelength in the ultraviolet region, reaching a sub-microkelvin temperature limit.
Collapse