1
|
Lv C, Hu B, Tao Y. A Novel AIE-Active Salicylaldehyde-Schiff Base Probe with Carbazole Group for Al 3+ Detection in Aqueous Solution. J Fluoresc 2024:10.1007/s10895-024-03859-7. [PMID: 39133442 DOI: 10.1007/s10895-024-03859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
A donor-acceptor Schiff-base fluorescent probe BKS with chelation enhanced fluorescence (CHEF) mechanism was designed and synthesized via benzophenone(Acceptor), salicylaldehyde and carbazole(Donor) for Al3+ detection, which exhibited typical aggregation-induced emission (AIE) characteristic. BKS probe could provide outstanding selectivity to Al3+ with a prominent fluorescence "turn-on" at 545 nm in a wide pH range from 2 to 11. By the Job's plot, the binding stoichiometry ratio of probe BKS to Al3+ was determined 1:1. The proposed strategy offered a very low limit of detection at 1.486 µM in THF/H2O(V/V = 1:4, HEPBS = 10 mM, pH = 7.40), which was significantly lower than the standard of WHO (Huang et al., Microchem J 151:104195, 2019)-(Yongjie Ding et al., Spectrochim Acta Mol Biomol Spectrosc 167:59-65, 2021) guidelines for drinking water. BKS probe could provide a wider linear detection range of 50 to 500 µM. Furthermore, the probe could hardly be interfered by other examined metal ions. The analysis of Al3+ in real water samples with appropriate recovery (100.72 to 102.85) with a relative standard deviation less than 2.82% indicated the accuracy and precision of BKS probe and the great potential in the environmental monitoring of Al3+.
Collapse
Affiliation(s)
- Chenyan Lv
- Research and development department, Hunan Langsai technology company, Yueyang, Hunan Province, 414006, PR China
| | - Bowen Hu
- Research and development department, Hunan Langsai technology company, Yueyang, Hunan Province, 414006, PR China.
| | - Yong Tao
- Research and development department, Hunan Langsai technology company, Yueyang, Hunan Province, 414006, PR China.
| |
Collapse
|
2
|
Yun L, He J, Xu J, Cheng X. A novel method to prepare water-soluble cellulose-based fluorescent probes for highly sensitive and selective detection and removal of Hg 2+/Hg 22+ ions. Int J Biol Macromol 2023; 247:125764. [PMID: 37433421 DOI: 10.1016/j.ijbiomac.2023.125764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Improving the water solubility of natural product cellulose and using it to treat heavy metal ions is very important. In this work, cellulose-based fluorescent probes containing BODIPY fluorophore were synthesized by simple chemical method, which realized the selective recognition and removal of Hg2+/Hg22+ ions in an aqueous system. Firstly, fluorescent small molecule (BOK-NH2) bearing -NH2 group was synthesized through Knoevenagel condensation reaction between BO-NH2 and cinnamaldehyde. Secondly, via the etherification of -OH on the cellulose, substituents bearing -C ≡ CH groups with different lengths at the end are grafted on the cellulose. Finally, cellulose-based probes (P1, P2, and P3) were prepared by amino-yne click reaction. The solubility of cellulose is improved greatly, especially the cellulose derivative with branched long chains has excellent solubility in water (P3). Benefiting from the improved solubility, P3 could be processed into solutions, films, hydrogels, and powders. Upon the addition of Hg2+/Hg22+ ions, the fluorescence intensity enhanced, which are "turn-on" probes. At the same time, the probes could be utilized as efficient adsorbents for Hg2+/Hg22+ ions. The removal efficiency of P3 for Hg2+/Hg22+ is 79.7 %/82.1 %, and the adsorption capacity is 159.4 mg·g-1/164.2 mg·g-1. These cellulose-based probes are expected to be employed in the treatment of polluted environments.
Collapse
Affiliation(s)
- Lin Yun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jiao He
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jinlei Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
3
|
Saremi M, Kakanejadifard A, Ghasemian M, Namdari M. A colorimetric and turn-on fluorescent sensor for rapid and selective detection of Fe3+ ion based on azo compound of 4-((4-(dimethylamino) phenyl)diazenyl)-N-(pyridin-2-yl)benzamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
A thieno[2,3-a]carbazole-based multifunctional probe: colorimetric detecting of Fe3+/Cu2+/Hg2+ and fluorescent sensing of Cu2+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Man LL, Dou L, Li WD, La YT, Dong WK. A dual-signal half-salamo-based sensing platform for simultaneous colorimetric and fluoremetric detection of Fe3+ and reversible recognition of OH− ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
A ratiometric fluorescent sensor based azo compound of 4-(4-Dimethylamino-phenylazo)-N-pyridin-2-ylmethyl-benzamide for rapid and selective detection of Fe3+ ion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Liu T, Huang Q, Tian M, Lin Z, Wu W, Ren T, Zhang J. A new near-infrared fluorescence sensor based on dicyanomethylene-4H-pyran for the detection of Al3+, Cr3+, Fe3+ and Cu2+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Wang D, Marin L, Cheng X. Fluorescent chitosan-BODIPY macromolecular chemosensors for detection and removal of Hg 2+ and Fe 3+ ions. Int J Biol Macromol 2022; 198:194-203. [PMID: 34973270 DOI: 10.1016/j.ijbiomac.2021.12.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
The detection of heavy metals, such as Hg2+ and Fe3+, is of great significance. In this work, fluorescent small-molecule BODIPY (BY-3) bearing CC group was synthesized firstly. And then, the chitosan-based polymer sensor CY-1 was synthesized through the spontaneous NH2/C≡C click reaction. The synthesized CY-1 can effectively bind and recognize Hg2+/Hg+ by the -C=N groups formed in the click reaction. Moreover, the macromolecular sensors CS-1 and CS-2 were synthesized by incorporating another recognition sites to CY-1. These synthesized macromolecular sensors can not only recognize Hg2+/Hg+, but also effectively recognize Fe3+/Fe2+. All of them exhibited significant quenching effect, visible to the naked eye under UV irradiation. The detection limit of CY-1 for Hg2+ was 1.51 × 10-6 mol/L, and the detection limit of CS-2 for Fe3+ was 2.30 × 10-6 mol/L. The BODIPY-chitosan sensors synthesized in this work have the functions of removing heavy metal ions besides the identifying ability. The maximum adsorption capacity of 1 g chitosan to Hg2+ was 108 mg as the best one. This article provides a new method to prepare macromolecular sensors for the detection and removal of heavy metal ions. As a useful natural polymer, chitosan's application scope was enlarged.
Collapse
Affiliation(s)
- Die Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
9
|
Khairy GM, Amin AS, Moalla SMN, Medhat A, Hassan N. Fluorescence determination of Fe( iii) in drinking water using a new fluorescence chemosensor. RSC Adv 2022; 12:27679-27686. [PMID: 36276051 PMCID: PMC9516559 DOI: 10.1039/d2ra05144c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
A new fluorescence chemosensor based on (Z)-2-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)hydrazine-1-carbothioamide (CEHC) has been developed for the determination of Fe(iii) in drinking water. The optimum conditions were acetate buffer solution with a pH 5.0. In this approach, the determination of Fe(iii) is based on static quenching of the luminescence of the probe upon increasing concentrations of Fe(iii). The CEHC sensor binds Fe(iii) in a 1 : 1 stoichiometry with a binding constant Ka = 1.30 × 104 M−1. CEHC responds to Fe(iii) in a way that is more sensitive, selective, and quick to turn off the fluorescence than to other heavy metal ions. Selectivity was proved against seven other metal ions (Mn(ii), Al(iii), Cu(ii), Ni(ii), Zn(ii), Pb(ii), and Cd(ii)). The calibration curve was constructed based on the Stern–Volmer equation. The linear range was 2.50–150 μM with the correlation coefficient of 0.9994, and the LOD was 0.76 μM. The method was successfully applied to determine Fe(iii) in drinking water samples, and the accuracy of the chemosensor was validated by atomic absorption spectrometry. A new fluorescence chemosensor based on (Z)-2-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)hydrazine-1-carbothioamide (CEHC) has been developed for the determination of the fluorescence probe of Fe(iii) in drinking water.![]()
Collapse
Affiliation(s)
- Gasser M. Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Alaa S. Amin
- Department of Chemistry, Faculty of Science, Benha University, Egypt
| | - Sayed M. N. Moalla
- Department of Chemistry, Faculty of Science, Port Said University, Egypt
| | - Ayman Medhat
- Department of Chemistry, Faculty of Science, Port Said University, Egypt
| | - Nader Hassan
- Department of Chemistry, Faculty of Science, Port Said University, Egypt
| |
Collapse
|
10
|
Geng Y, Chen L, Wan Q, Lian C, Han Y, Wang Y, Zhang C, Huang L, Zhao H, Sun X, He H. A novel [1,2,4]triazolo[1,5-a]pyrimidine derivative as a fluorescence probe for specific detection of Fe 3+ ions and application in cell imaging. Anal Chim Acta 2021; 1187:339168. [PMID: 34753578 DOI: 10.1016/j.aca.2021.339168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023]
Abstract
The detection of metal ions is of particular importance for monitoring environmental pollution and life metabolic activities. However, it is still a challenge to achieve Fe3+ detection with specific sensitivity and rapid response, especially in the presence of chelating agents for Fe3+ ions. Herein, a novel fluorescence probe for Fe3+, i.e., amide derivative of [1,2,4]triazolo[1,5-a] pyrimidine (TP, Id), was synthesized, featuring specific Fe3+ selectivity, rapid quenching (5 s), low limit of detection (0.82 μM), good permeability and low cytotoxicity. More importantly, Id can be used to identify and detect Fe3+ in the presence of existing strong chelating agents (e.g., EDTA) for Fe3+ ions. The results show that the as-synthesized fluorescence probe is particularly suitable as a bioimaging reagent to monitor intracellular Fe3+ in living HeLa cells. Furthermore, we proposed the binding mode for Id with Fe3+ ions and the light-emitting mechanism through high-resolution mass spectra and density function theory calculations, respectively. An Id-based test paper can be used to rapidly identify Fe3+. These results are expected to improve the development of new sensitive and specific fluorescent sensors for Fe3+.
Collapse
Affiliation(s)
- Yanru Geng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Liping Chen
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qinglan Wan
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chengxi Lian
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yu Han
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yan Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chaoying Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Han Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xingshen Sun
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, PR China
| | - Hongwei He
- Qingdao University, Qingdao, 266042, PR China
| |
Collapse
|
11
|
Xia X, Zhang D, Fan C, Pu S. Naked‐eye detection of Cu (II) and Fe (III) based on a Schiff Base Ruthenium complex with nicotinohydrazide. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Xia
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Daobin Zhang
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science & Technology Normal University Nanchang 330013 China
| |
Collapse
|