1
|
Maji A, Naskar R, Mitra D, Gharami S, Murmu N, Mondal TK. Fabrication of a New Coumarin Based Fluorescent "turn-on" Probe for Distinct and Sequential Recognition of Al 3+ and F - Along With Its Application in Live Cell Imaging. J Fluoresc 2023; 33:2403-2414. [PMID: 37084063 DOI: 10.1007/s10895-023-03208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).
Collapse
Affiliation(s)
- Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | |
Collapse
|
2
|
Song YF, Wu WN, Zhao XL, Wang Y, Fan YC, Dong XY, Xu ZH. A simple colorimetric and fluorometric probe for rapid detection of CN - with large emission shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121540. [PMID: 35780762 DOI: 10.1016/j.saa.2022.121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel probe R was synthesized via Knoevenagel reaction between 3H-benzo[f]chromium-2-formaldehyde and ethyl cyanoacetate for selective detection of CN- in both colorimetric and fluorescent signal channels. The recognition of CN- was through the nucleophilic reaction of CN- to C = C of probe R, which destroys π-conjugation and blocks the ICT effect of the probe, resulting in colorimetric and fluorometric responses. Probe R showed great sensitivity toward CN-, with large fluorescent emission (595 nm) and low detection limit (0.70 μM). Moreover, probe R can detect exogenous CN- in living cells.
Collapse
Affiliation(s)
- Yu-Fei Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, 461000, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
3
|
Heo JS, Gil D, Kim C. Highly Selective Detection of Al3+ by Carboxamide-Based Fluorescent Chemosensor. J Fluoresc 2022; 32:825-833. [DOI: 10.1007/s10895-021-02869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Guo Z, Wang Q, Zhou D, An Y, Wang P, Liao F. A novel peptide-based fluorescent probe with a large stokes shift for rapid and sequential detection of Cu 2+ and CN - in aqueous systems and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120257. [PMID: 34411770 DOI: 10.1016/j.saa.2021.120257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A novel fluorescent probe (DSD) was reasonably designed and synthesized with dansyl-labeled dipeptide (Dan-Ser-Asp-NH2). DSD featured remarkably large Stokes shift (230 nm) and perfect water solubility, and exhibited high selectivity and rapid recognition toward Cu2+via fluorescence quenching. The detection limit of DSD for Cu2+ was 2.4 nM, indicated that DSD has excellent sensitivity. In addition, the stoichiometry between DSD and Cu2+ were detected as 1:1 by fluorescence titration, Job's plot and ESI-HRMS data. As designed, DSD-Cu2+ system was able to sequentially detect CN- according to the displacement approach with fluorescence "off-on" response, and the detection limit for CN- was calculated to be 41.9 nM. Specifically, the response time of DSD with Cu2+ and CN- was less than 40 s, which rendered it suitable for real time detection in actual water samples. In addition, with the alternate addition of Cu2+ and CN-, the reversible cycles could be repeated for at least 10 times, indicated that DSD was a promising reversibility probe. DSD showed low toxicity and good biocompatibility, and was successfully applied to detect Cu2+ and CN- in living cells.
Collapse
Affiliation(s)
- Zhouquan Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Dagang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| | - Fang Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR. China.
| |
Collapse
|
5
|
Ullah Z, Sonawane PM, Nguyen TS, Garai M, Churchill DG, Yavuz CT. Bisphenol-based cyanide sensing: Selectivity, reversibility, facile synthesis, bilateral "OFF-ON" fluorescence, C 2ν structural and conformational analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119881. [PMID: 33971439 DOI: 10.1016/j.saa.2021.119881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
A structurally characterized novel dual-pocketed tetra-conjugated bisphenol-based chromophore (fluorescence = 652 nm) was synthesized in gram scale in ~90% yield from its tetraaldehyde. Highly selective, naked-eye detection of CN- (DMSO/H2O) was confirmed by interferent testing. A detection limit of 0.38 µM, within the permissible limit of CN- concentration in drinking water was achieved as mandated by WHO. The "reversibility" study shows potential applicability and reusability of Sen. Moreover, cost-effective and on-site interfaces, application tools such as fabricated cotton swabs, plastic Petri dishes, and filter papers further demonstrated the specific selectivity of Sen for the toxic CN-. In addition, an easily available and handy smartphone-assisted "Color Picker" app was utilized to help estimate the concentration of CN- ion present. A dual phenol deprotonation mechanism is active and supported by 1H NMR spectroscopic data and DFT calculation results.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Energy, Environment, Water and Sustainability (EEWS), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Prasad M Sonawane
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Thien S Nguyen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), 4700 Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Mousumi Garai
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Cafer T Yavuz
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Energy, Environment, Water and Sustainability (EEWS), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Membranes and Porous Materials (AMPM) Center, Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), 4700 Thuwal, 23955-6900 Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Mittal SK, Chhibber M, Gupta S. Imine derivative as an analytical probe for Al+3, F− and CN− sensing with antibacterial activity against E. coli – An application of electrochemical and spectrofluorimetric techniques. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Singha D, Pal A, Uyama H, Roy P, Nandi M. Discriminatory behavior of a rhodamine 6G decorated mesoporous silica based multiple cation sensor towards Cu 2+ and Hg 2+vis-à-vis Al 3+, Cr 3+ and Fe 3+: selective removal of Cu 2+ and Hg 2+ from aqueous media. Dalton Trans 2021; 50:12478-12494. [PMID: 34240725 DOI: 10.1039/d1dt01542g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Selective identification of metal ions as well as their removal is possible when a sensing unit is anchored to a solid support. In this paper, functionalized mesoporous silica with a pendant rhodamine 6G moiety (R6FMS) has been obtained by successive grafting of an aldehyde derivative of bisphenol A followed by rhodamine 6G over a 3-aminopropyl anchored mesoporous silica framework. The materials have been characterized by powder X-ray diffraction, nitrogen sorption and electron microscopy studies, FT-IR and solid state MAS NMR spectral studies, and thermal analysis. In ethanol, the colorless silica material gives pink coloration in the presence of Al3+, Cr3+, Fe3+ and Cu2+ which is also clearly evident from the generation of an absorption peak at 525 nm. Upon excitation at 500 nm, the fluorescence intensity of the probe increases by 36-, 17-, 40- and 89-fold in the presence of Al3+, Cr3+, Fe3+ and Cu2+ ions, respectively. This suggests that R6FMS is a colorimetric and fluorescent chemosensor for these cations in ethanol. However, when the solvent is changed from ethanol to water, it becomes a selective chemosensor only for Cu2+ and Hg2+, by the generation of a pink color and strong fluorescence at ca. 550 nm, thereby discriminating the trivalent cations. Cations induce the opening of the spirolactam ring resulting in pink coloration and strong fluorescence. The quantum yield and lifetime of the probe have been increased considerably in the presence of these cations in ethanol as well as in aqueous media. The detection limit values for these cations range from 10-6 to 10-8 M. R6FMS has been used to remove Hg2+ and Cu2+ from their aqueous solution with a maximum adsorption capacity of 35 mg g-1 and 148 mg g-1 for Cu2+ and Hg2+, respectively.
Collapse
Affiliation(s)
- Debdas Singha
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | - Ananya Pal
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| |
Collapse
|
8
|
|
9
|
Ding W, Chen Z, Cao W, Gu Y, Zhang T, Wang C, Li W, Sun F. Copper nanoclusters with/without salicylaldehyde-modulation for multifunctional detection of mercury, cobalt, nitrite and cyanide ions in aqueous solution and bioimaging. NANOTECHNOLOGY 2021; 32:145704. [PMID: 33333493 DOI: 10.1088/1361-6528/abd4a2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sensitive determination of multiple heavy metal ions and toxic anions is important in biological and environmental fields. Here we report a facile strategy to construct a multifunctional chemosensor for the detection of Hg2+, [Formula: see text]Co2+, and CN- in aqueous solution based on the fluorescent copper nanoclusters (Cu NCs). It was interesting to find that salicylaldehyde (SA) could effectively modulate the fluorescence property and sensing behavior of Cu NCs. In the absence of SA, Cu NCs showed 'on-off' fluorescence responses at the addition of Hg2+ and [Formula: see text] under different quenching mechanisms. Upon the presence of SA, Cu NCs exhibited a strong intramolecular charge transfer emission at 500 nm, accompanied by the decrease of the initial fluorescence of Cu NCs at 430 nm. This fluorescence on-state of Cu NC-SA at 500 nm was found to be exclusively turned off by Co2+ and enhanced by CN-. Spectroscopy results combined with thermodynamic analysis provided sufficient information to deduce the sensing mechanisms. Finally, the Cu NCs showed high biocompatibility and were able to be used for fluorescence bioimaging in living cells. This study provided a novel and simple strategy to construct the multifunctional chemosensors for bioanalytical applications.
Collapse
Affiliation(s)
- Weihua Ding
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Zhichuan Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Wei Cao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Yayun Gu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Ting Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Chengniu Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Wenqing Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Aydin D. Sensing of aluminum and cyanide ions utilizing a novel bis-phenol a based fluorogenic probe: Applications in test stripts. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
|
12
|
Jayarajan R, Satheeshkumar R, Kottha T, Subbaramanian S, Sayin K, Vasuki G. Water mediated synthesis of 6-amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2'-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2'-bipyridine]-3-carboxamide - An experimental and computational studies with non-linear optical (NLO) and molecular docking analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117861. [PMID: 31806479 DOI: 10.1016/j.saa.2019.117861] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
6-Amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2'-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2'-bipyridine]-3-carboxamide were synthesized through three-component reaction between N1,N3-di(pyridin-2-yl)-malonamide, aldehyde and malononitrile in water using triethylamine as a base at room temperature. Synthesized compounds were characterized by using different techniques (FT-IR, NMR and X-ray diffraction). Additionally, the mentioned compounds were investigated by computational chemistry methods. Obtained results were supported with calculated results. Additionally, NLO properties and molecular docking analyses of related compounds were examined in detail. The binding modes of the compounds 4a and 4b were explored with the colchicine binding site of tubulin, from molecular docking studies, remarkable interactions have been observed for 4a and 4b near to the colchicines binding site of tubulin that may contribute to the inhibition of tubulin polymerization and anticancer activity.
Collapse
Affiliation(s)
- Ramasamy Jayarajan
- Department of Chemistry, Pondicherry University, Pondicherry 605014, India; Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Rajendran Satheeshkumar
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | | | - Sabarinathan Subbaramanian
- Department of Chemistry, Pondicherry University, Pondicherry 605014, India; Department of Chemistry, SRM Institute of Science and Technology (SRMIST), Vadapalani, Chennai-600026, TamilNadu, India
| | - Koray Sayin
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey; Sivas Cumhuriyet University Advanced Research and Application Center (CUTAM), 58140 Sivas, Turkey.
| | | |
Collapse
|