1
|
Hemmati M, Selakjan AHQ, Ghasemi F. Iron(III) edta-accelerated growth of gold/silver core/shell nanoparticles for wide-range colorimetric detection of hydrogen peroxide. Sci Rep 2025; 15:4050. [PMID: 39900979 PMCID: PMC11790969 DOI: 10.1038/s41598-025-88342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
As a naturally occurring reducing and oxidizing agent, hydrogen peroxide (H2O2) has a role in several biotic and abiotic processes. Hence, the onsite, precise, and rapid determination of H2O2 is crucial. Herein, we propose a method for colorimetric detection of H2O2 on the basis of hindered formation of gold/silver core/shell nanoparticles. We used ascorbic acid (AA) as the electron donor to reduce silver ions (Ag+) to be shelled around gold nanoparticles and iron(III) edta as an accelerator reactant. Upon reduction of Ag+, owing to the formation of core/shell nanoparticles, the color of the system changes from pink to yellow/orange in the spherical nanoparticles and from pink to purple/blue/green/yellow/orange in the nanorods. The nanorods distinguished color in a rainbow manner for higher concentrations of H2O2, and spherical nanoparticles were critical in the sensitive detection of lower concentrations of H2O2. H2O2 scavenges AA electrons and therefore inhibits core/shell formation and, consequently, restrains the system's spectral shift and color change. This characteristic was exploited to measure different concentrations of H2O2. Under well-optimized conditions, various concentrations of H2O2 ranging from 1.0 to 50 µΜ have shown an acceptable linear relationship with different colors and, with a limit of detection (LOD) of 230 nM. Furthermore, various real samples were examined to confirm the practicality of our developed probe.
Collapse
Affiliation(s)
- Mahdi Hemmati
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Amir Hossein Q Selakjan
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
2
|
Ghorbanian E, Ghasemi F, Tavabe KR, Alizadeh Sabet HR. Formation of plasmonic core/shell nanorods through ammonia-mediated dissolution of silver(i)oxide for ammonia monitoring. NANOSCALE ADVANCES 2024; 6:3229-3238. [PMID: 38868819 PMCID: PMC11166121 DOI: 10.1039/d4na00216d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Due to the expansion of the aquaculture industry in the world and the importance of controlling ammonia in fish breeding water, high levels of which impose significant damage to fish farming, it is crucial to develop affordable, rapid, and on-site methods for timely and accurate detection of ammonia. In this study, a colorimetric sensor based on the formation of gold/silver core/shell nanorods (NRs) was developed for the rapid detection of ammonia. The sensor functioned by the specific dissolution of silver(i) oxide by ammonia, which triggered the activation of silver ions and the subsequent formation of gold/silver core/shell NRs in the presence of a reducing agent (i.e., ascorbic acid (AA)). This led to changes in the surface composition, size, and aspect ratio of the NRs, which was accompanied by a vivid color change from green to red/orange in less than a minute. The colorimetric sensor was optimized by adjusting the effective parameters, including ascorbic acid, silver ion, and sodium hydroxide concentration as well as pH and reaction time. After the optimization process, the sensor was found to have a linear range from 50 to 800 μmol L-1 (0.85-13.6 ppm). In addition, the application of the sensor was validated by measuring the ammonia content in water samples from rearing ponds for rainbow trout, sturgeon, and tilapia before and after feeding. The sensor's label-free, rapid, user-friendly, naked-eye, and cost-effective operation makes it an attractive option for on-site environmental monitoring of ammonia.
Collapse
Affiliation(s)
- Elahe Ghorbanian
- Department of Fisheries, Faculty of Natural Resources, University of Tehran Karaj Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO) Karaj Iran
| | - Kamran Rezaei Tavabe
- Department of Fisheries, Faculty of Natural Resources, University of Tehran Karaj Iran
| | - Hamid Reza Alizadeh Sabet
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education, and Extension Organization (AREEO) Rasht Iran
| |
Collapse
|
3
|
Abdali M, Ghasemi F, Seyed Hosseini HM, Mahdavi V. Different sized gold nanoparticles for array-based sensing of pesticides and its application for strawberry pollution monitoring. Talanta 2024; 267:125121. [PMID: 37672984 DOI: 10.1016/j.talanta.2023.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The use of pesticides plays an essential role in improving crop quality and yield, however, it causes air, water, and soil pollution and the residue of these pesticides in agricultural products threatens the ecosystem and human life. Therefore, it is highly desirable to develop rapid, simple, and cost-effective methods for regular monitoring of pesticide residues in agricultural products especially strawberry that is consumed fresh and unpeeled. In this study, gold nanoparticles (AuNPs) of varying sizes have been exploited as sensing units to design a non-enzymatic colorimetric sensor array for the detection and discrimination of various pesticides including; bifenazate (BF), paraquat (PQ), diazinon (DZ), thiometon (TM), and carbendazim (CD) and chlorpyrifos (CP). Because of their strong size- and environmentally-dependent properties, AuNPs with different sizes produced distinguished plasmonic patterns in the presence of pesticides at a vast range of concentrations (25-800 ng mL-1). Plasmonic patterns of sensor units have been analyzed by various data visualization (bar plots and heat maps) and pattern recognition methods (linear discriminant analysis (LDA)). The multivariate calibrations showed linear responses ranging from 50 to 800 ng mL-1 for carbendazim, chlorpyrifos, paraquat, and bifenazate and 25-800 ng mL-1 for diazinon and thiometon. The limit of detection (LOD) was calculated to be 17.7, 22.8, 22.4, 9.7, 7.4, and 23.8 ng mL-1 for carbendazim, chlorpyrifos, paraquat, diazinon, thiometon, and bifenazate respectively. Finally, the applicability of the designed sensor was evaluated in real samples comprising tap water, well water, soil, and fruit, leave, drainage water, and culture substrate of strawberry.
Collapse
Affiliation(s)
- Masoumeh Abdali
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
| | - Hossein Mir Seyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
4
|
Cegłowski M, Otłowski T, Gierczyk B, Smeets S, Lusina A, Hoogenboom R. Explosives removal and quantification using porous adsorbents based on poly(2-oxazoline)s with various degree of functionalization. CHEMOSPHERE 2023; 340:139807. [PMID: 37574087 DOI: 10.1016/j.chemosphere.2023.139807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Polymeric porous adsorbents are reported for removal of explosives, namely picric acid, 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN) and their subsequent quantification using direct analysis with ambient plasma mass spectrometry. The adsorbents are obtained by functionalization of short-chain poly(2-oxazoline)s with methyl ester side chains using 4-(aminomethyl)pyridine with a degree of functionalization equal to 0, 5, 10, and 20%. The subsequent step consist of cross-linking using a high internal phase emulsion procedure by further side-chain amidation with diethylenetriamine as crosslinker. Picric acid, RDX, and PETN were chosen as the model compounds as they belong to three different groups of explosives, in particular nitroaromatics, nitroamines, and nitrate esters, respectively. The adsorption isotherms, kinetics, as well as the influence of pH and temperature on the adsorption process was investigated. The porous adsorbents showed the highest maximum adsorption capacity towards picric acid, reaching 334 mg g-1, while PETN (80 mg g-1) and RDX (17.4 mg g-1) were less efficiently adsorbed. Subsequent quantification of the adsorbed explosives is performed by a specially designed ambient mass spectrometry setup equipped with a thermal heater. The obtained limits of detection were found to be 20-times improved compared to direct analysis of analyte solutions. The effectiveness of the proposed analytical setup is confirmed by successful quantification of the explosives in river water samples. The research clearly shows that functional porous adsorbents coupled directly with ambient mass spectrometry can be used for rapid quantification of explosives, which can be, e.g., used for tracking illegal manufacturing sites of these compounds.
Collapse
Affiliation(s)
- Michał Cegłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Tomasz Otłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Błażej Gierczyk
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sander Smeets
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Aleksandra Lusina
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium.
| |
Collapse
|
5
|
Can K, Can Z, Üzer A, Apak R. Visual colorimetric sensor for nitroguanidine detection based on hydrogen bonding-induced aggregation of uric acid-functionalized gold nanoparticles. Talanta 2023; 260:124585. [PMID: 37119798 DOI: 10.1016/j.talanta.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
A colorimetric assay is proposed for the quantification of nitroguanidine (NQ), based on triggering the aggregation of uric acid-modified gold nanoparticles (AuNPs@UA) by intermolecular hydrogen bonding interaction between uric acid (UA) and NQ. The red-to-purplish blue (lavender) color change of AuNPs@UA with increasing NQ concentrations could be perceived with the naked eye or detected by UV-vis spectrophotometry. The absorbance versus concentration correlation gave a linear calibration curve in the range of 0.6-3.2 mg L-1 NQ, with a correlation coefficient of 0.9995. The detection limit of the developed method was 0.063 mg L-1, lower than those of noble metal aggregation methods in the literature. The synthesized and modified AuNPs were characterized using UV-vis spectrophotometry, scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Some critical parameters such as modification conditions of AuNPs, UA concentration, solvent environment, pH, and reaction time were optimized for the proposed method. The non-interference of common explosives (i.e., nitroaromatic, nitramine, nitrate ester, insensitive and inorganic explosives), common soil and groundwater ions (Na+, K+, Ca2+, Mg2+, Cu2+, Fe2+, Fe3+, Cl-, NO3-, SO42-, CO32-, PO43-) and possible interfering compounds (used as camouflage agents for explosives; D-(+)-glucose, sweeteners, acetylsalicylic acid (aspirin), household powder detergents, and paracetamol) on the proposed method was demonstrated, proving that the procedure was fairly selective for NQ, due to special hydrogen bonding interactions between UA-functionalized AuNPs and NQ. Finally, the proposed spectrophotometric method was applied to NQ-contaminated soil, and the obtained results were statistically compared with those of the liquid chromatography-tandem mass spectrometric (LC-MS/MS) method in the literature.
Collapse
Affiliation(s)
- Kader Can
- Department of Chemistry, Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey; Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Ziya Can
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Ayşem Üzer
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey.
| | - Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay St. No:112, Çankaya, 06670, Ankara, Turkey.
| |
Collapse
|
6
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
7
|
Kumar A, Sahoo SC, Mehta SK, Soni P, Sharma V, Kataria R. A luminescent Zn-MOF for the detection of explosives and development of fingerprints. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:700-707. [PMID: 35099486 DOI: 10.1039/d1ay01977e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A luminescent 3D metal-organic framework [Zn(NDA)(AMP)] = PUC1 (where, NDA = naphthalene-2,6-dicarboxylic acid and AMP = 4-aminomethyl pyridine) was synthesized under solvothermal conditions. The synthesized 3D framework was fully characterized with the help of different analytical techniques such as SCXRD, FTIR, TGA, PXRD, SEM, BET, etc. PUC1 exhibited a strong emission peak at 371 nm when excited at 290 nm and the resulting emission was efficiently quenched in the presence of various organic explosive substances like pentaerythritol tetranitrate (PETN), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX). PUC1 revealed highly sensitive and selective detection of PETN and Tetryl with high quenching constant values of 0.1 × 106 and 0.12 × 105 M-1 and low detection limits of 0.315 and 0.404 μM respectively. The strong luminescent properties of PUC1 lead to its successful application in the development of latent fingermarks on different non-porous surfaces using the powder dusting method. The accuracy and applicability of the synthesized material were determined by developing fingerprints by using secretions from eccrine and apocrine glands on a glass slide and various other surfaces, followed by dusting the surfaces. The results so obtained were found to be very accurate and promising.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | | | | | - Parmod Soni
- Department of Chemistry, Terminal Ballistics Research Laboratory (TBRL), Defence Research and Development Organisation, Chandigarh 160003, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| | - Ramesh Kataria
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
8
|
Sepahvand M, Ghasemi F, Hosseini HM. Accelerated Leaching of Unmodified Gold Nanoparticles for Environmental and Biological Monitoring of Nitrite and Nitrate. ChemistrySelect 2022. [DOI: 10.1002/slct.202103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marzieh Sepahvand
- Department of Soil Science College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Forough Ghasemi
- Department of Nanotechnology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education, and Extension Organization (AREEO) Karaj 3135933151 Iran
| | - Hossein Mirseyed Hosseini
- Department of Soil Science College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
9
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
10
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Naseri A, Ghasemi F. Analyte-restrained silver coating of gold nanostructures: an efficient strategy to advance multicolorimetric probes. NANOTECHNOLOGY 2021; 33:075501. [PMID: 34740204 DOI: 10.1088/1361-6528/ac3704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Visual detection based on gold nanorods (AuNRs) has gained tremendous attention in sensing applications owing to the potential for simple, inexpensive, instrument-free, and on-site detection. The proper selection of the mechanism involved in the interaction between the analyte and the nanostructure plays a significant role in designing a selective and multicolorimetric probe for visual purposes. A winning mechanism to develop multicolorimetric probes is the silver metalization of AuNRs. Herein, an unprecedented idea is presented to expand the variety of multicolorimetric sensors relying on the mechanism of silver deposition. We introduce the anti-silver deposition mechanism in which the analyte directly or indirectly restrains the silver coating of AuNRs. To ascertain the anti-silver deposition mechanism, we have exploited the proposed idea for the direct detection of nitrate. The presence of nitrate (as restrainer agent), which was firstly treated with ascorbic acid (as reducing agent), induced a decrease in the spectral blueshift of AuNRs along with diverse sharp color transitions from reddish-orange (blank) to maroon, wine, berry/purple, dark blue, teal, green, seafoam, and mint. The difference in the spectrum area of the probe in the absent (So) and presence (S) of nitrate were linearly proportional to nitrate concentration in the range of 0.5-5.5 mmol l-1and the limit of detection was calculated to be 465μmol l-1. Furthermore, the practicability of the multicolor probe was assessed by the determination of nitrate in complex environmental samples.
Collapse
Affiliation(s)
- Amene Naseri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran
| |
Collapse
|
12
|
Sepahvand M, Ghasemi F, Seyed Hosseini HM. Thiol-mediated etching of gold nanorods as a neoteric strategy for room-temperature and multicolor detection of nitrite and nitrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4370-4378. [PMID: 34499055 DOI: 10.1039/d1ay01117k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excessive presence of nitrite and nitrate in environmental matrixes has raised concerns among the scientific communities due to their negative impacts on human health and living organisms. Considering the necessity of regular monitoring and rapid evaluation of nitrite and nitrate, it is of great interest to develop methods capable of on-site detection of these compounds. This study presents a non-aggregation colorimetric method based on etching gold nanorods (AuNRs) for visual detection of nitrite and nitrate. Instead of temperature, we propose using thiourea as a sulfur-containing compound to accelerate the rate of AuNR etching. Thiourea forms stable cationic species with Au+ ions and consequently speeds up the etching process by reducing the redox potential of Au+/Au. In the presence of thiourea, the AuNRs are etched by nitrite resulting in wide obvious color changes from brown to light brown, green, blue, purple, pink, and colorless. In addition to nitrite, the developed method is capable of nitrate determination by reducing nitrate to nitrite through acid-washed zinc powder and is the first report of colorful detection of nitrate. Under optimized conditions, a good linear relationship was found between nitrite/nitrate concentration and the colorimetric response in the range of 8.0 to 100 μmol L-1 and 0.5 to 3.0 mmol L-1 with a limit of detection (LOD) as low as 1.3 μmol L-1 and 173.3 μmol L-1 for nitrite and nitrate, respectively. Furthermore, the practical application of our developed probe was confirmed by accurate determination of nitrite and nitrate in various complex media including water samples, soil extracts, and food products such as salami and sausage.
Collapse
Affiliation(s)
- Marzieh Sepahvand
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | - Hossein Mir Seyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
13
|
Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg Top Life Sci 2021; 5:367-379. [PMID: 33960382 DOI: 10.1042/etls20200281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Warfare threats and acts of terror are challenging situations encountered by defense agencies across the globe and are of growing concern to the general public, and security-minded policy makers. Detecting ultra-low quantities of explosive compounds in remote locations or under harsh conditions for anti-terror purposes as well as the environmental monitoring of residual or discarded explosives in soil, remains a major challenge. The use of metal nanoparticles (NPs) for trace explosive detection has drawn considerable interest in recent years. For nano-based explosive sensor devices to meet real-life operational demands, analytical parameters such as, long-shelf life, stability under harsh conditions, ease-of-use, high sensitivity, excellent selectivity, and rapid signal response must be met. Generally, the analytical performance of colorimetric-based nanosensor systems is strongly dependent on the surface properties of the nanomaterial used in the colorimetric assay. The size and shape properties of metal NPs, surface functionalisation efficiency, and assay fabrication methods, are factors that influence the efficacy of colorimetric explosive nanosensor systems. This review reports on the design and analytical performances of colorimetric explosive sensor systems using metal NPs as optical signal transducers. The challenges of trace explosive detection, advances in metal NP colorimetric explosive design, limitations of each methods, and possible strategies to mitigate the problems are discussed.
Collapse
|
14
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Plasmonic nanoparticles for colorimetric detection of nitrite and nitrate. Food Chem Toxicol 2021; 149:112025. [PMID: 33556467 DOI: 10.1016/j.fct.2021.112025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023]
Abstract
Irregular and unknowingly use of chemical compounds is a serious threat to the environment, human health, and other living organisms attributable and intensified by the growing population and increasing demand for food. Nitrite and nitrate are among those compounds that are widely used in agricultural and industrial products. Therefore on-site, rapid, simple, and accurate monitoring of nitrite/nitrate is highly desirable. In this review, while emphasizing the importance of nitrite and nitrate in food chain safety and health of living organisms, their measurement methods, in particular, nanoplasmonic colorimetric sensors are comprehensively discussed based on the researches in this field. Nanoplasmonic-based sensors have proved to be successful in comparison with traditional methods due to their low cost, biocompatibility, high sensitivity and selectivity, and most importantly, the ability to visually detect and be used on-site to measure nitrite and nitrate. The design principle of nanoplasmonic sensors will be presented into two categories of aggregation- and etching-based detection followed by their applications in nitrite detection. The nitrate measurement will be discussed based on either direct detection of nitrate or indirect strategy in which nitrate is reduced to nitrite by enzymes or metals. Finally, the remaining challenges and prospects in this topic will be described and outlined.
Collapse
|
16
|
Mirghafouri MR, Abbasi-Moayed S, Ghasemi F, Hormozi-Nezhad MR. Nanoplasmonic sensor array for the detection and discrimination of pesticide residues in citrus fruits. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5877-5884. [PMID: 33283792 DOI: 10.1039/d0ay02039g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Great attention has been directed towards developing rapid and straightforward methods for the identification of various pesticides that are usually used simultaneously in citrus fruits. The extensive use of diverse classes of pesticides in citrus fruits and their high toxicity may cause serious diseases in the human body. In the current study, a non-enzymatic sensor array has been developed for the identification and discrimination of five different pesticides belonging to diverse classes, including organophosphate, carbamate, and bipyridylium. For this aim, two gold nanoparticles (AuNPs) with different capping agents, citrate and borohydride, were used as sensing elements. The aggregation-induced spectra alterations of AuNPs were utilized to identify the pesticides in a wide range of concentrations (20-5000 ng mL-1). We have employed data visualization methods (i.e., heat maps, bar plots, and color difference maps), a supervised pattern recognition method (i.e., linear discrimination analysis), and partial least squares regression to qualitatively and quantitatively determine the pesticides. Finally, the practical applicability of the developed sensor array was evaluated for the identification of target pesticides in lime peel. The outcomes revealed that the probe could accurately verify the absence or presence of the pesticides in lime fruit.
Collapse
Affiliation(s)
- M Reza Mirghafouri
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
| | | | | | | |
Collapse
|
17
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bordbar MM, Nguyen TA, Arduini F, Bagheri H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochim Acta 2020; 187:621. [PMID: 33084996 DOI: 10.1007/s00604-020-04596-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric paper-based sensor is proposed for the rapid monitoring of six major organophosphate and carbamate pesticides. The assay was constructed by dropping gold and silver nanoparticles on the hydrophilic zones of a paper substrate. The nanoparticles were modified by L-arginine, quercetin, and polyglutamic acid. The mechanism of sensing is based on the interaction between the pesticide and the nanoparticles. The color of nanoparticles changed during the interactions. A digital camera recorded these changes. The assay provided a unique response for each studied pesticide. This method can determine six individual pesticides including carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos. The limit of detection for these pesticides were 29.0, 22.0, 32.0, 17.0, 45.0, and 36.0 ng mL-1, respectively. The assay was applied to simultaneously determine the six studied pesticides in a mixture using the partial least square method (PLS). The root mean square errors of prediction were 11, 8.7, 9.2, 10, 12, and 11 for carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos, respectively. The paper-based device can differentiate two types of studied pesticide (organophosphate and carbamate) as well as two types of organophosphate structures (oxon and thion). Furthermore, this sensor showed high selectivity to the pesticides in the presence of other potential species (e.g., metal ions, anions, amino acids, sugar, and vitamins). This assay is capable of determining the pesticide compounds in tap water, apple juice, and rice samples.Graphical abstract.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tien Anh Nguyen
- Department of Physics, Le Quy Don Technical University, Hanoi, Vietnam
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|