1
|
Jiang SL, Wang WJ, Hu ZY, Zhang RJ, Shi JH. Comprehending the intermolecular interaction of JAK inhibitor fedratinib with bovine serum albumin (BSA)/human alpha-1-acid glycoprotein (HAG): Multispectral methodologies and molecular simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123277. [PMID: 37625199 DOI: 10.1016/j.saa.2023.123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The primary coverage of this paper is to investigate the molecular interaction of JAK2 inhibitor, fedratinib (FED) with BSA/HAG proteins through multispectral approaches and molecular docking as well as MD calculation. Arrival at a conclusion, the endogenous fluorescence of BSA/HAG protein was quenched separately in the form of static and mixed quenching. The FED-BSA and FED-HAG complexes with the stoichiometric ratio of 1:1 were formed in the interaction process. And, The Kb values of these complexes were of 104-105 M-1 and 105-106 M-1, respectively, representing that the FED-HAG complex exhibited a comparatively high affinity compared to the FED-BSA complex. It is confimed that FED inserted into the interface area between subdomain IIA and IIB of BSA (marked as site II') and the bucket-shaped hydrophobic cavity of HAG, respectively, resulting in the slight alteration in the secondary structure of BSA/HAG and the micro-environment round Tyr and Trp residues. The expetimental results also confirmed that van der Waals forces (VDW), hydrogen bonds and hydrophobic interaction played a dominant role in the formation of two stable complexes. The above experimental results were supplemented and verified through molecular docking and MD simulation. Meanwhile, the effects of common ions on affinity were explored. This study could shine a light on evaluating the pharmacological properties of the JAK inhibitor FED, understanding the distribution and operation of the drug in the body, and leading to the development of the creation of novel medication devise.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Rong-Juan Zhang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
2
|
Jiang SL, Li L, Hu L, Kou SB, Shi JH. Comprehending binding features between ibrutinib and Human Alpha-1 acid glycoprotein: Combined experimental approaches and theoretical simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121834. [PMID: 36116409 DOI: 10.1016/j.saa.2022.121834] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Human alpha-1 acidic glycoprotein (HAG) is one of the proteins widely present in the blood, and the level of HAG in patients with cancer and inflammation is significantly increased. As one of transport proteins in the blood, the ability of HAG to bind with a drug, especially alkaline drugs, affects significantly the drug content at the target site, which in turn affects the efficacy of the drug. In this study, the interaction mechanism between HAG and the first generation Bruton's tyrosine kinase (BTK) inhibitor namely ibrutinib was explored by a combination of multi-spectroscopic techniques and theoretical calculations. The findings revealed that the quenching and binding constants of the HAG-ibrutinib system both reduced as the temperature rose, demonstrating that ibrutinib quenched the intrinsic fluorescence of HAG in a static manner. It was confirmed that HAG and ibrutinib formed a 1:1 complex with moderate affinity due to the binding constant of around 105 M-1 and accompanied by Förster resonance energy transfer. It was verified by thermodynamic parameter analysis and competition assays as well as molecular simulation that the existence of hydrogen bonds, van der Waals forces, and hydrophobic forces in the complexation of HAG and ibrutinib.The findings from theoretical calculations including molecular docking and theoretical calculation simulation confirmed that ibrutinib bound to the barrel hydrophobic pocket of HAG with a binding energy of -41.9 kJ∙mol-1, and the the binding constant of around 105 M-1 and the contribution of each residue in the complexation of ibrutinib and HAG. Additionally, it can be confirmed that metal ions affected the binding interaction of ibrutinib with HAG, among them, some promoted binding while others inhibited it.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
3
|
Xu T, Qian D, Hu Y, Zhu Y, Zhong Y, Zhang L, Xu H, Mao Z. Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe 3+ for flame-retardant cotton fabric. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To impart durable flame retardant property to cotton fabric, a kind of multilayered hybrid film based on environmentally friendly phytic acid, sepiolite, polyaspartic acid, and Fe3+ were deposited on the surface of cotton fabric by layer-by-layer and spraying method to form a dense protective layer. Compared with cotton fabric, hybrid film coated cotton showed excellent flame retardant property and low fire hazard, which can be demonstrated by vertical flame test, limiting oxygen index (LOI) and cone calorimeter test. After-flame time and after-glow time of hybrid film coated cotton is 1 s and 1 s, respectively. LOI value of hybrid film coated cotton increased by 44.4% compared with control sample. Cone calorimeter test revealed a total heat release rate reduction of 52.6% and peak heat release rate reduction of 73.6% for hybrid film coated cotton fabric. This work demonstrates that the hybrid film composed of phytic acid, sepiolite, polyaspartic acid, and Fe3+ could improve the durable flame retardant property of cotton fabric.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Di Qian
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yelei Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yuanzhao Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Ministry of Education , Tsinghua University , Beijing , 100084 , P. R. China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
- National Dyeing and Finishing Engineering Technology Research Center , Donghua University , No. 2999, North Renmin Road, Songjiang District , Shanghai 201620 , P. R. China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology , Taian , Shandong Province , 271000 , P. R. China
| |
Collapse
|
4
|
Soliman E, Ibrahim MM, El-Khouly ME, El-Mehasseb I, Ramadan AEMM, Mahfouz ME, Shaban SY, van Eldik R. BSA Interaction, Molecular Docking, and Antibacterial Activity of Zinc(II) Complexes Containing the Sterically Demanding Biomimetic N 3S 2 Ligand: The Effect of Structure Flexibility. Molecules 2022; 27:3543. [PMID: 35684479 PMCID: PMC9182146 DOI: 10.3390/molecules27113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Two zinc(II) complexes, DBZ and DBZH4, that have (ZnN3S2) cores and differ in the bridging mode of the ligating backbone, effectively bind to BSA. The binding affinity varies as DBZ > DBZH4 and depends on the ligand structure. At low concentrations, both complexes exhibit dynamic quenching, whereas at higher concentrations they exhibit mixed (static and dynamic) quenching. The energy transfer mechanism from the BSA singlet excited state to DBZ and DBZH4, is highly likely according to steady-state fluorescence and time-correlated singlet photon counting. Molecular docking was used to support the mode of interaction of the complexes with BSA and showed that DBZ had more energy for binding. Furthermore, antibacterial testing revealed that both complexes were active but to a lesser extent than chloramphenicol. In comparison to DBZH4, DBZ has higher antibacterial activity, which is consistent with the binding constants, molecular docking, and particle size of adducts. These findings may have an impact on biomedicine.
Collapse
Affiliation(s)
- Eman Soliman
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikhheikh 33516, Egypt; (E.S.); (I.E.-M.); (A.E.-M.M.R.)
| | - Mohamed M. Ibrahim
- Chemistry Department, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mohamed E. El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Borg El-Arab 21934, Egypt;
| | - Ibrahim El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikhheikh 33516, Egypt; (E.S.); (I.E.-M.); (A.E.-M.M.R.)
| | - Abd El-Motaleb M. Ramadan
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikhheikh 33516, Egypt; (E.S.); (I.E.-M.); (A.E.-M.M.R.)
| | - Magdy E. Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt;
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikhheikh 33516, Egypt; (E.S.); (I.E.-M.); (A.E.-M.M.R.)
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
5
|
Fan Y, Tao Y, Liu G, Wang M, Wang S, Li L. Interaction study of engeletin toward cytochrome P450 3A4 and 2D6 by multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120311. [PMID: 34481255 DOI: 10.1016/j.saa.2021.120311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The inhibitory effects of engeletin on the activities of human cytochrome P450 3A4 and 2D6 (CYP3A4 and CYP2D6) were investigated by enzyme kinetics, multi-spectroscopy and molecular docking. Engeletin was found to strongly inhibit CYP3A4 and CYP2D6, with the IC50 of 1.32 μM and 2.87 μM, respectively. The inhibition modes of engeletin against CYP3A4 and CYP2D6 were a competitive type and a mixed type, respectively. The fluorescence of the two CYPs was quenched statically by engeletin, which was bound to CYP3A4 stronger than to CYP2D6 at the same temperature. Circular dichroism spectroscopy, three-dimensional fluorescence, ultraviolet-visible spectroscopy and synchronous fluorescence confirmed that the conformation and micro-environment of the two CYPs protein were changed after binding with engeletin. Molecular docking, ultraviolet-visible spectroscopy and the fluorescence data revealed that engeletin had strong binding affinity to the two CYPs through hydrogen and van der Waals forces. The findings here suggested that engeletin may cause the herb-drug interactions for its inhibition of CYP3A4 and CYP2D6 activities.
Collapse
Affiliation(s)
- Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032,China.
| |
Collapse
|
6
|
Bhaduri R, Mukherjee S, Mitra I, Ghosh S, Chatterji U, Dodda SR, Moi SC. Anticancer activity and cell death mechanism of Pt(II) complexes: Their in vitro bio-transformation to Pt(II)-DNA adduct formation and BSA binding study by spectroscopic method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120096. [PMID: 34214741 DOI: 10.1016/j.saa.2021.120096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Pt(II) complex cis-[Pt(PEA)(OH2)2] X2, C-2 (where, PEA = 2-Pyridylethylamine and X = ClO4- or NO3-) was synthesized by hydrolysis of cis-[Pt(PEA)Cl2] C-1. Glutathione (GSH) and DL-penicilamine (DL-pen) substituted complexes cis-[Pt(PEA)(GSH)],C-3 and cis-[Pt(PEA)DL-pen)]X C-4 were synthesized and characterized by spectroscopic methods. Kinetic studies were traced on complex C-2 with the thiols, GSH and DL-pen. Pt(II)-Sulfur adduct formation mechanisms of the substituted products C-3 and C-4 were established from the kinetic investigation. At pH 4.0, C-2 - thiols interactions follow two consecutive steps: the first step is dependent, and the second is independent of [thiol]. The association equilibrium constant (KE), substitution rate constants for both steps (k1 & k2), and activation parameters (ΔH‡ and ΔS‡) have been assessed to propose the mechanism. Agarose gel electrophoresis mobilization pattern of DNA with complexes was performed to visualize the interaction nature. CT-DNA and BSA binding activities of the complexes have been executed by electronic, fluorescence spectroscopy, and viscometric titration methods. Evaluation of thermodynamic parameters (ΔH0, ΔS0, and ΔG0) from BSA binding constants was executed to propose the driving forces of interaction between these species. A molecular docking study was performed to evaluate the binding mode of complexes with BDNA strands. Anticancer activity of the complexes C-1 to C-4 was explored on both A549 and HEp-2 cell lines, compared with approved anticancer drugs cisplatin, carboplatin, and oxaliplatin. All these complexes were tested by NBT assay on normal cell line skeletal muscle cells (L6 myotubes) to observe the adverse effects compared to recognized anticancer medications. The ultimate aim is to explore the role of anticancer agents on cell death mechanism, which has been performed by flow-cytometer on HEp-2 cell lines.
Collapse
Affiliation(s)
- Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, W.B., India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, W.B., India
| | - Subba Reddy Dodda
- Department of Biotechnology, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, WB, India
| | - Sankar Ch Moi
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|