1
|
Lin XW, Liu RH, Wang S, Yang JW, Tao NP, Wang XC, Zhou Q, Xu CH. Direct Identification and Quantitation of Protein Peptide Powders Based on Multi-Molecular Infrared Spectroscopy and Multivariate Data Fusion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406208 DOI: 10.1021/acs.jafc.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Given that protein peptide powders (PPPs) from different biological sources were inherited with diverse healthcare functions, which aroused adulteration of PPPs. A high-throughput and rapid methodology, united multi-molecular infrared (MM-IR) spectroscopy with data fusion, could determine the types and component content of PPPs from seven sources as examples. The chemical fingerprints of PPPs were thoroughly interpreted by tri-step infrared (IR) spectroscopy, and the defined spectral fingerprint region of protein peptide, total sugar, and fat was 3600-950 cm-1, which constituted MIR finger-print region. Moreover, the mid-level data fusion model was of great applicability in qualitative analysis, in which the F1-score reached 1 and the total accuracy was 100%, and a robust quantitative model was established with excellent predictive capacity (Rp: 0.9935, RMSEP: 1.288, and RPD: 7.97). MM-IR coordinated data fusion strategies to achieve high-throughput, multi-dimensional analysis of PPPs with better accuracy and robustness which meant a significant potential for the comprehensive analysis of other powders in food as well.
Collapse
Affiliation(s)
- Xiao-Wen Lin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| | - Run-Hui Liu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Song Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| | - Jie-Wen Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Ning-Ping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Xi-Chang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Qun Zhou
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| |
Collapse
|
2
|
Munekata PES, Finardi S, de Souza CK, Meinert C, Pateiro M, Hoffmann TG, Domínguez R, Bertoli SL, Kumar M, Lorenzo JM. Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:672. [PMID: 36679464 PMCID: PMC9860605 DOI: 10.3390/s23020672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The quality and shelf life of meat and meat products are key factors that are usually evaluated by complex and laborious protocols and intricate sensory methods. Devices with attractive characteristics (fast reading, portability, and relatively low operational costs) that facilitate the measurement of meat and meat products characteristics are of great value. This review aims to provide an overview of the fundamentals of electronic nose (E-nose), eye (E-eye), and tongue (E-tongue), data preprocessing, chemometrics, the application in the evaluation of quality and shelf life of meat and meat products, and advantages and disadvantages related to these electronic systems. E-nose is the most versatile technology among all three electronic systems and comprises applications to distinguish the application of different preservation methods (chilling vs. frozen, for instance), processing conditions (especially temperature and time), detect adulteration (meat from different species), and the monitoring of shelf life. Emerging applications include the detection of pathogenic microorganisms using E-nose. E-tongue is another relevant technology to determine adulteration, processing conditions, and to monitor shelf life. Finally, E-eye has been providing accurate measuring of color evaluation and grade marbling levels in fresh meat. However, advances are necessary to obtain information that are more related to industrial conditions. Advances to include industrial scenarios (cut sorting in continuous processing, for instance) are of great value.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Sarah Finardi
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Carolina Krebs de Souza
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Caroline Meinert
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Tuany Gabriela Hoffmann
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam, Germany
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Sávio Leandro Bertoli
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, 32004 Ourense, Spain
| |
Collapse
|
3
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part II. Recent noteworthy developments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121750. [PMID: 36030669 DOI: 10.1016/j.saa.2022.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive survey review compiles noteworthy developments and new concepts of two-dimensional correlation spectroscopy (2D-COS) for the last two years. It covers review articles, books, proceedings, and numerous research papers published on 2D-COS, as well as patent and publication trends. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields strongly confirms that it is well accepted as a powerful analytical technique to provide an in-depth understanding of systems of interest.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
4
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
5
|
Yin M, Matsuoka R, Yanagisawa T, Xi Y, Zhang L, Wang X. Effect of different drying methods on free amino acid and flavor nucleotides of scallop (patinopecten yessoensis) adductor muscle. Food Chem 2022; 396:133620. [PMID: 35843006 DOI: 10.1016/j.foodchem.2022.133620] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023]
Abstract
The effects of hot air drying (HAD), vacuum hot air drying (VHAD), microwave drying (MWD), and vacuum freeze drying (VFD) on free amino acids (FAAs) and flavor nucleotides in scallop adductor muscle (SAM) were studied. The liquid chromatography and multidimensional infrared spectroscopy (MM-IR) were used. Compared with fresh SAM, the main FAAs were glycine, alanine, arginine, and glutamic acid in dried SAM. The total FAAs content in VFD group was 1.40-1.90 times of the other group. The umami taste nucleotides (IMP and AMP) content in the VFD and MWD groups was significantly higher than that in HAD and VHAD groups. Equivalent umami concentrations were found: VFD > MWD > VHAD > HAD. MM-IR analysis was an efficient method for identifying taste components. The results revealed FAAs and flavor nucleotides and the mutual adjustment of compounds were related to drying method, and VFD was preferred for taste substance retention in scallops.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | | | | | - Yinci Xi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
7
|
Ni C, Liu H, Liu Q, Sun Y, Pan L, Fisk ID, Liu Y. Rapid and nondestructive monitoring for the quality of Jinhua dry‐cured ham using hyperspectral imaging and chromometer. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chendie Ni
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Hai Liu
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Qiang Liu
- College of Food Science and TechnologyNanjing Agricultural University Nanjing China
| | - Ye Sun
- College of Food Science and TechnologyNanjing Agricultural University Nanjing China
| | - Leiqing Pan
- College of Food Science and TechnologyNanjing Agricultural University Nanjing China
| | - Ian Denis Fisk
- Division of Food SciencesUniversity of Nottingham Loughborough UK
| | - Yuan Liu
- Department of Food Science & TechnologyShanghai Jiao Tong University Shanghai China
- Shanghai Engineering Research Center of Food Safety Shanghai China
| |
Collapse
|