1
|
Zhang H, Jiang Y, Wang J, Jiang Z. High-throughput photo-chemiluminescence imaging for HIV DNA determination based on a sulfur-doped graphitic carbonitride photocatalyst. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2114-2120. [PMID: 37092688 DOI: 10.1039/d3ay00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a novel photo-chemiluminescence (PCL) array imaging technique was developed to detect HIV DNA sequences using water-dispersed ultrathin sulfur-doped g-C3N4 porous nanosheets (SCNNSs) as photocatalysts, with complementary chains of HIV DNA as the biorecognition elements. The PCL response was enhanced when a suitable amount of SCNNSs was used. The large specific surface area and π-conjugated structure of the SCNNSs provided a good platform for immobilizing the complementary chains of HIV DNA. When DNA complementary chains were present, some of the catalytically active sites of SCNNSs were blocked, and the PCL of the platform was weakened. When the HIV DNA was added, the DNA double chain was far away from the surfaces of the SCNNSs because the stacking interactions between the formed dsDNA and SCNNSs were weak. Therefore, the addition of the target HIV DNA sequence noticeably restored the signal. In the range of 5.00 × 10-8 M to 200 × 10-8 M, the enhanced PCL response was linearly related to the concentration of the HIV DNA sequence, and the detection limit (3S/N) was 1.50 × 10-8 mol L-1. In addition, the combination of SCNNSs with complementary chains of HIV DNA successfully produced a high-performance PCL imaging sensor. In these proof-of-concept experiments, we demonstrated that our method was fast, portable, and ultra-sensitive, with high throughput.
Collapse
Affiliation(s)
- Huilan Zhang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yifan Jiang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350116, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhou Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Fujimori K, Izutani A, Tsujimoto K, Hirahara M, Moriuchi-Kawakami T, Ueda M, Suzue T, Kimoto H, Okamura K. Deep-sea in situ determination of sulfide using a sensitized chemiluminescent terbium complex. ANAL SCI 2023:10.1007/s44211-023-00323-7. [PMID: 36959381 DOI: 10.1007/s44211-023-00323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
A new chemiluminescence (CL) method based on the chemiluminescent reaction between sulfide and an acidic permanganate solution was used to quantify sulfide in seawater. A terbium-pipemidic acid complex was used as CL enhancer. The method was used to determine sulfide in the concentration range of 1-30 μmol/L in artificial seawater samples. The limit of detection of the method was 21 nmol/L sulfide. The sensitivity of the CL method was eight times higher than that of the CL method reported previously. Br- ions, which are conservative ions, interfered with sulfide. We investigated the effects of salinity, water temperature, and interfering chemicals,such asheavy-metal ions and organic matter, on the performance of the CL method. In addition, sulfite-spiked natural seawater samples were analyzed. The results demonstrate that the CL method can be used to develop a deep-sea sulfide analyzer.
Collapse
Affiliation(s)
- Keiichi Fujimori
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi, Osaka, 535-8585, Japan.
| | - Akira Izutani
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi, Osaka, 535-8585, Japan
| | - Kenta Tsujimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi, Osaka, 535-8585, Japan
| | - Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi, Osaka, 535-8585, Japan
| | - Takayo Moriuchi-Kawakami
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi, Osaka, 535-8585, Japan
| | - Masato Ueda
- Kimoto Electric Co. Ltd., 3-1 Funahashi, Ten-Noji, Osaka, 543-0024, Japan
| | - Takahiko Suzue
- Kimoto Electric Co. Ltd., 3-1 Funahashi, Ten-Noji, Osaka, 543-0024, Japan
| | - Hideshi Kimoto
- Kimoto Electric Co. Ltd., 3-1 Funahashi, Ten-Noji, Osaka, 543-0024, Japan
| | - Kei Okamura
- Kochi University, Research and Education Faculty, B200 Monobe, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
3
|
Yuan X, Yan S, Wei C, Zhang Y, Su Y, Lv Y. Strong enhancement of the chemiluminescence of cerium (IV)-Na2S system by mono-dispersed N-CDs generated in situ. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Zhou H, Cai Y, Zhang M, Li W, Zhao Y. A miniature chemiluminescence spectrometric system induced by atmosphere microplasma jet to avoid using hydrogen peroxide and catalyst. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121399. [PMID: 35609394 DOI: 10.1016/j.saa.2022.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
A miniature luminol chemiluminescence system based on atmosphere microplasma is proposed for detection without any catalysts. In our research, atmosphere microplasma jet is employed to oxidize luminol and produce chemiluminescence instead of H2O2. The transport of OH radicals to the plasma-liquid interface and induce the chemiluminescence. The weight of the system is only 3.6 kg (including a 1.2 kg laptop), and the power consumption of the microplasma is only 0.045 W. The mechanism of luminol chemiluminiscence induced by microplasma jet and generation of microplasma jet are investigated in this study. A 1 mL sample solution is sufficient for trace 3-NPA determination within an analysis time of 6 min. In the range of 0.03-10 mg L-1, 3-NPA can be quantitatively analyzed along with a detection limit of 0.008 mg L-1. In addition, the proposed system is employed for real-world samples detection, including water samples, brown sugar and tainted sugarcane, which demonstrates the reliability and practical feasibility of the detection method.
Collapse
Affiliation(s)
- Han Zhou
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yi Cai
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Min Zhang
- School of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Li
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yong Zhao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
5
|
Kamyabi MA, Moharramnezhad M, Hajari N. Facile microwave route for the synthesis of CuS/CQDs/g-C3N4NS as a novel promising cathodic electrochemiluminescence detection of imidacloprid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Yao W, Zhang X, Lin Z. A sensitive biosensor for glucose determination based on the unique catalytic chemiluminescence of sodium molybdate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120401. [PMID: 34555694 DOI: 10.1016/j.saa.2021.120401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Chemiluminescent (CL) reaction between hydrogen peroxide (H2O2) and luminol was dramatically enhanced by sodium molybdate (Na2MoO4) for 284-fold. CL mechanism investigation indicated that Na2MoO4 increased the production of hydroxyl radical (•OH) and superoxide anion (•O2-) in the H2O2-luminol system, which could attribute to the enhanced-CL intensity and gave us new insights into the CL-enhanced property of Na2MoO4. The CL intensity of Na2MoO4-H2O2-luminol system increased with the concentration of H2O2, based on which, a convenient and sensitive CL determination method could be developed for H2O2 in the concentration ranging from 0.5 to 60 μmol/L, with a detection limit of 0.25 μmol/L. Combining with glucose oxidase, the Na2MoO4-H2O2-luminol system could also be applied for glucose detection. Glucose in human serum has been successfully detected with satisfied recoveries in the range of 96.7 % to 105.4 %.
Collapse
Affiliation(s)
- Wensong Yao
- College of Medical Sciences, Ningde Normal University, Ningde 352100, China
| | - Xiaomin Zhang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Center for Drug Evaluation & Monitoring & Reevaluation, Fuzhou 350003, China.
| | - Zhen Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
7
|
Deepa S, Ramu A, Kumar KR. Natural catalyst for Luminol chemiluminesence - Application to validate peroxide levels in commercial hair dyes. LUMINESCENCE 2021; 37:558-568. [PMID: 34967114 DOI: 10.1002/bio.4182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/07/2022]
Abstract
Herein, we report hydrothermally treated green leaves (Moringa Oleifera) extract exploited as an efficient and highly-sensitive catalyst to catalyse the Chemiluminescence (CL) reaction of luminol. In the absence of enhancer, this green and hydrothermally treated catalyst (GHT) was found to significantly enhance the CL intensity about 3.5 fold as compared to the traditionally used K3 Fe(CN)6 catalyst. The structure and surface morphology of the catalyst was elucidated by XPS, SEM, XRD and Raman spectroscopy. The synergistic effect of the catalyst in the CL reaction was systematically investigated in the presence of hydrogen peroxide using UV Visible and chemiluminesence spectroscopy. Studies show that the sensitivity of the catalyst could be amplified by adjusting several parameters such as pH of the medium, concentrations of the base and luminol. The sensitivity of the novel-type catalyst was examined through the validation of hydrogen peroxide levels in the commercial hair dye samples. Remarkably, the catalyst displayed ultra-sensitivity to hydrogen peroxide as the limit of detection (LOD) of H2 O2 using this catalyst is determined to be 0.02 μM under optimized conditions. In general, the proposed inexpensive, eco-friendly, and non-toxic catalyst could enable the determination of the hydrogen peroxide for diverse analytical applications.
Collapse
Affiliation(s)
- Simon Deepa
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Tamilnadu, India
| | - Arumugam Ramu
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Tamilnadu, India
| | - Kannapiran Rajendra Kumar
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Tamilnadu, India
| |
Collapse
|
8
|
Zhang W, Xu D, Wang F, Chen M. Element-doped graphitic carbon nitride: confirmation of doped elements and applications. NANOSCALE ADVANCES 2021; 3:4370-4387. [PMID: 36133458 PMCID: PMC9417723 DOI: 10.1039/d1na00264c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Doping is widely reported as an efficient strategy to enhance the performance of graphitic carbon nitride (g-CN). In the study of element-doped g-CN, the characterization of doped elements is an indispensable requirement, as well as a huge challenge. In this review, we summarize some useful characterization methods which can confirm the existence and chemical states of doped elements. The advantages and shortcomings of these characterization methods are discussed in detail. Various applications of element-doped g-CN and the function of doped elements are also introduced. Overall, this review article aims to provide helpful information for the research of element-doped g-CN.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Datong Xu
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Fengjue Wang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Meng Chen
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| |
Collapse
|
9
|
Wang R, Yue N, Fan A. Nanomaterial-enhanced chemiluminescence reactions and their applications. Analyst 2020; 145:7488-7510. [PMID: 33030463 DOI: 10.1039/d0an01300e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemiluminescence (CL) analysis is a trace analytical method that possesses advantages including high sensitivity, wide linear range, easy operation, and simple instruments. With the development of nanotechnology, many nanomaterial (NM)-enhanced CL systems have been established in recent years and applied for the CL detection of metal ions, anions, small molecules, tumor markers, sequence-specific DNA, and RNA. This review summarizes the research progress of the nanomaterial-enhanced CL systems the past five years. These CL reactions include luminol, peroxyoxalate, lucigenin, ultraweak CL reactions, and so on. The CL mechanisms of the nanomaterial-enhanced CL systems are discussed in the first section. Nanomaterials take part in the CL reactions as the catalyst, CL emitter, energy acceptor, and reductant. Their applications are summarized in the second section. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Ruyuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | | | | |
Collapse
|
10
|
Sun X, Lei J, Jin Y, Li B. Long-Lasting and Intense Chemiluminescence of Luminol Triggered by Oxidized g-C 3N 4 Nanosheets. Anal Chem 2020; 92:11860-11868. [PMID: 32786482 DOI: 10.1021/acs.analchem.0c02221] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of the known chemiluminescence (CL) systems are flash-type, whereas a CL system with long-lasting and strong emission is very favorable for accurate CL quantitative analysis and imaging assays. In this work, we found that the oxidized g-C3N4 (g-CNOX) could trigger luminol-H2O2 to produce a long-lasting and intense CL emission. The CL emission lasted for over 10 min and could be observed by the naked eye in a dark room. By means of a CL spectrum, X-ray photoelectron spectra, and electron spin resonance spectra, the possible mechanism of this CL reaction was proposed. This strong and long-duration CL emission was attributed to the high catalytic activity of g-CNOX nanosheets and continuous generation of reactive oxygen species from H2O2 on g-CNOX surface. Taking full advantage of the long-lasting CL property of this system, we proposed one "non-in-situ mixing" mode of CL measurement. Compared with the traditional "in-situ mixing" CL measurement mode, this measurement mode was convenient to operate and had good reproducibility. This work not only provides a long-lasting CL reaction but also deepens the understanding of the structure and properties of g-C3N4 material.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
11
|
Sunzini F, De Stefano S, Chimenti MS, Melino S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int J Mol Sci 2020; 21:ijms21041180. [PMID: 32053981 PMCID: PMC7072783 DOI: 10.3390/ijms21041180] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 01/12/2023] Open
Abstract
The social and economic impact of chronic inflammatory diseases, such as arthritis, explains the growing interest of the research in this field. The antioxidant and anti-inflammatory properties of the endogenous gasotransmitter hydrogen sulfide (H2S) were recently demonstrated in the context of different inflammatory diseases. In particular, H2S is able to suppress the production of pro-inflammatory mediations by lymphocytes and innate immunity cells. Considering these biological effects of H2S, a potential role in the treatment of inflammatory arthritis, such as rheumatoid arthritis (RA), can be postulated. However, despite the growing interest in H2S, more evidence is needed to understand the pathophysiology and the potential of H2S as a therapeutic agent. Within this review, we provide an overview on H2S biological effects, on its role in immune-mediated inflammatory diseases, on H2S releasing drugs, and on systems of tissue repair and regeneration that are currently under investigation for potential therapeutic applications in arthritic diseases.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection Immunity and Inflammation, University of Glasgow, 120 University, Glasgow G31 8TA, UK;
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Susanna De Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Maria Sole Chimenti
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-0672594410
| |
Collapse
|