1
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
2
|
Zhang H, Su Y, Zhao J, Song H, Zhou X. A ratiometric fluorescence assay for the detection of DNA methylation based on an alkaline phosphatase triggered in situ fluorogenic reaction. Analyst 2024; 149:507-514. [PMID: 38073500 DOI: 10.1039/d3an01854g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The accurate and sensitive quantification of DNA methylation is significant for the early diagnosis of cancer. In this work, an alkaline phosphatase (ALP) triggered in situ fluorogenic reaction between ascorbic acid (AA) and 2,3-DAN was employed as a ratiometric fluorescent probe for the accurate and sensitive detection of DNA methylation with the assistance of ALP encapsulated liposomes. The quinoxaline derivative with a yellow fluorescence emission (I525) was generated from the reaction between AA and 2,3-DAN. Meanwhile, the consumption of 2,3-DAN declined its fluorescence intensity (I386). A ratiometric fluorescent probe (I525/I386) constructed by the above in situ fluorogenic reaction was applied for the accurate detection of DNA methylation. The methylated DNA was first captured by its complementary DNA in 96-well plates. Then, 5mC antibody (Ab) linked liposomes that were encapsulated with ALP recognized and combined with the methylation sites of the target DNA. After the liposomes were lysed by Triton X-100, the released ALP triggered the hydrolysis of ascorbic acid diphosphate (AAP) to form AA, participating in the fluorogenic reaction with 2,3-DAN to produce a quinoxaline derivative. Thus, the ratiometric fluorescence detection of DNA methylation was achieved using I525/I386 values. Using the ALP-enzyme catalyzed reaction and liposomes as signal amplifiers, a low detection limit of 82 fM was obtained for DNA methylation detection. Moreover, the accuracy of the assay could be improved using ratiometric fluorescent probes. We hope that the proposed assay will pave a new way for the accurate determination of low-abundance biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Yinhui Su
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Jiamiao Zhao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Huixi Song
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Xiaohong Zhou
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
3
|
Zhang H, Wu S, Song Z, Fang L, Wang HB. Tannic acid-accelerated fenton chemical reaction amplification for fluorescent biosensing: The proof-of-concept towards ultrasensitive detection of DNA methylation. Talanta 2023; 265:124811. [PMID: 37327662 DOI: 10.1016/j.talanta.2023.124811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
As a promising biomarker, the level of methylated DNA usually changes in the early stage of the cancer. Ultrasensitive detection of the changes of methylated DNA offers possibility for early diagnosis of cancer. In this work, a tannic acid-accelerated Fenton chemical reaction amplification was firstly proposed for the construction of ultrasensitive fluorescent assay. Tannic acid was used as reductant to accelerate Fenton reaction procedure through the conversion of Fe3+/Fe2+, generating hydroxyl radicals (·OH) continuously. The produced ·OH oxidized massive non-fluorescent terephthalic acid (TA) to fluorescent-emitting hydroxy terephthalic acid (TAOH). In this way, the fluorescent signal could be greatly enhanced and the sensitivity was improved almost 116 times. The proposed signal amplification strategy was further applied to detect of DNA methylation with the assistance of liposome encapsulated with tannic-Fe3+ complexes. The methylated DNA was firstly captured through the hybridization with its complementary DNA that were pre-modified in the 96-well plate via the combination between streptavidin (SA) and biotin. Then, 5 mC antibody on the surface of liposomes specially recognized and combined with methylation sites, which brought large amount of tannic-Fe3+ complexes to participate Fenton reaction. The fluorescence of generated TAOH was depended on the concentration of methylated DNA. The assay showed good analytical performance for methylated DNA with a limit of detection (LOD) of 1.4 fM. It's believed that tannic acid-accelerated Fenton chemical reaction amplification strategy provides a promising platform for ultrasensitive fluorescent detection of low abundant biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China; State Key Laboratory of Chemo/Biosensing Ad Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| | - Zhixiao Song
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| |
Collapse
|
4
|
Koowattanasuchat S, Ngernpimai S, Matulakul P, Thonghlueng J, Phanchai W, Chompoosor A, Panitanarak U, Wanna Y, Intharah T, Chootawiriyasakul K, Anata P, Chaimnee P, Thanan R, Sakonsinsiri C, Puangmali T. Rapid detection of cancer DNA in human blood using cysteamine-capped AuNPs and a machine learning-enabled smartphone. RSC Adv 2023; 13:1301-1311. [PMID: 36686949 PMCID: PMC9814906 DOI: 10.1039/d2ra05725e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
DNA methylation occurs when a methyl group is added to a cytosine (C) residue's fifth carbon atom, forming 5-methylcytosine (5-mC). Cancer genomes have a distinct methylation landscape (Methylscape), which could be used as a universal cancer biomarker. This study developed a simple, low-cost, and straightforward Methylscape sensing platform using cysteamine-decorated gold nanoparticles (Cyst/AuNPs), in which the sensing principle is based on methylation-dependent DNA solvation. Normal and cancer DNAs have distinct methylation profiles; thus, they can be distinguished by observing the dispersion of Cyst/AuNPs adsorbed on these DNA aggregates in MgCl2 solution. After optimising the MgCl2, Cyst/AuNPs, DNA concentration, and incubation time, the optimised conditions were used for leukemia screening, by comparing the relative absorbance (ΔA 650/525). Following the DNA extraction from actual blood samples, this sensor demonstrated effective leukemia screening in 15 minutes with high sensitivity, achieving 95.3% accuracy based on the measurement by an optical spectrophotometer. To further develop for practical realisation, a smartphone assisted by machine learning was used to screen cancer patients, achieving 90.0% accuracy in leukemia screening. This sensing platform can be applied not only for leukemia screening but also for other cancers associated with epigenetic modification.
Collapse
Affiliation(s)
| | - Sawinee Ngernpimai
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyaporn Matulakul
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Janpen Thonghlueng
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Uthumporn Panitanarak
- Department of Biostatistics, Faculty of Public Health, Mahidol University Bangkok 10400 Thailand
| | - Yupaporn Wanna
- Department of Statistics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Thanapong Intharah
- Department of Statistics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | | | - Pimjai Anata
- Molecular Diagnosis Unit, Central Laboratory, Srinagarind Hospital, Khon Kaen University Khon Kaen 40002 Thailand
| | - Prajuab Chaimnee
- Molecular Diagnosis Unit, Central Laboratory, Srinagarind Hospital, Khon Kaen University Khon Kaen 40002 Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
5
|
Zhang L, Zhao X, Hu X, Zhang Y, Liu R, Peng H, Chen Y, Zhang H, Luo Y. Probing low abundant DNA methylation by CRISPR-Cas12a-assisted cascade exponential amplification. Analyst 2022; 147:2655-2661. [PMID: 35579071 DOI: 10.1039/d2an00170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and metastasis, and is regarded as a valuable non-invasive cancer biomarker. However, the sensitive and accurate quantification of DNA methylation from clinical samples remains a challenge. Herein, we propose an easy-to-operate Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system Assisted Methylation (CAM) approach for the sensitive detection of DNA methylation through the integration of rolling circle amplification and CRISPR-Cas12a-assisted cascade amplification. Briefly, bisulfite was employed to prepare the clinical samples so that the methylated DNA sequences trigger the subsequent triple signal amplifications, whilst the normal counterparts do not. The triple signal amplification procedure consists of methylated DNA sequence-based rolling circle amplification for a preliminary signal enhancement, a nicking enzyme-initiated target cleavage for a secondary amplification, and CRISPR-Cas12a enzyme-mediated trans-cleavage for a tertiary signal enhancement. This proposed approach reveals high sensitivity, which can even distinguish as low as 0.01% methylation levels from mixtures, paving the way towards the acceleration of methylation-based cancer diagnostics and management.
Collapse
Affiliation(s)
- Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xianxian Zhao
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China.
| | - Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yi Zhang
- Zhejiang Provincial People's Hospital, Hangzhou, 310014, PR. China
| | - Ruining Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China.
| | - Hai Peng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China.
| | - Youhao Chen
- Department of Orthopaedics, Three Gorges Hospital, Chongqing University, Chongqing, 404100, PR. China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China. .,Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, P.R. China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, P.R. China. .,Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China.
| |
Collapse
|
6
|
Zhu C, Gong L, Yang Y. Label-Free Analysis of Exosomes with Hairpin Structure-Mediated Multiple Signal Amplification Strategy. Appl Biochem Biotechnol 2022; 194:4147-4155. [PMID: 35639245 DOI: 10.1007/s12010-022-03978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Considering the crucial role of exosomes in various biological processes and disease diagnosis, development of label-free and sensitive exosome detection methods is in urgent demand. Herein, we develop an exponential amplification-based method pining the hope on sensitive exosomes detection in a label-free manner. In this method, a designed SMB (Streptavidin magnetic bead)-capture probe is utilized to specially recognize CD63 protein on the surface of exosome. The recognition of CD63 protein by SMB-capture probe induces the subsequent hairpin structure probe-mediated multiple signal amplifications. Eventually, the proposed approach can detect exosomes at a concentration as low as 1.2 × 102 particles/μl and can be potentially applied for clinical practices.
Collapse
Affiliation(s)
- Chengcong Zhu
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Lisha Gong
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yang Yang
- Health Management (physical examination) Center of North-Kuanren General Hospital, North-Kuanren General Hospital, No. 69 Renhe Xingguang Avenue, Chongqing, 401120, People's Republic of China.
| |
Collapse
|
7
|
A novel methyl-dependent DNA endonuclease GlaI coupling with double cascaded strand displacement amplification and CRISPR/Cas12a for ultra-sensitive detection of DNA methylation. Anal Chim Acta 2022; 1212:339914. [DOI: 10.1016/j.aca.2022.339914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
|
8
|
Meng X, Lei B, Qi N, Wang B. The selective detection of Fe 3+ ions using citrate-capped gold nanoparticles. Anal Biochem 2022; 637:114453. [PMID: 34785195 DOI: 10.1016/j.ab.2021.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/29/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Citrate is a ubiquitous biological molecule that functions as Fe3+ chelators in some bacteria and the blood plasma of humans. Inspired by the strong affinity between citrate and Fe3+, a colorimetric Fe3+ probe based on citrate-capped AuNPs without any additional modification was designed. Citrate-capped AuNPs with a diameter of 22 nm were applied to detect Fe3+ without other reagents' assistance. This easily-prepared and low-cost colorimetric sensor exhibited good selectivity towards Fe3+ among common metal ions, a good linear relationship in the range of 0.1-0.8 μM of Fe3+ and quick response time of 10 min.
Collapse
Affiliation(s)
- Xinhua Meng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Bijing Lei
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Na Qi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
9
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Wan Z, Gong F, Zhang M, He L, Wang Y, Yu S, Liu J, Wu Y, Liu L, Wu Y, Qu L, Sun J, Yu F. Detection of the level of DNMT1 based on self-assembled probe signal amplification technique in plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120020. [PMID: 34119770 DOI: 10.1016/j.saa.2021.120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
DNA (cytosine-5)-methyltransferase1 (DNMT1) is the most abundant DNA methyltransferase in somatic cells, and it plays an important role in the initiation, occurrence, and rehabilitation of tumors. Herein, we developed a novel strategy for the detection of the level of DNMT1 in human plasma using the self-assembled nucleic acid probe signal amplification technology. In this method, the DNMT1 monoclonal antibody (McAbDNMT1) was immobilized on carboxyl magnetic beads to form immunomagnetic beads and then captured DNMT1 specifically. After that, DNMT1 polyclonal antibody (PcAbDNMT1) and biotinylated sheep anti-rabbit IgG (sheep anti rabbit IgG-Biotin) were sequentially added into the system to react with DNMT1 and form biotinylated double antibody sandwich immunomagnetic beads. In the presence of the bridging medium streptavidin, the biotinylated double antibody sandwich immunomagnetic beads would form a complex with biotinylated poly-fluorescein (Biotin-poly FAM), and the fluorescence intensity of the complex was proportional to the concentration of DNMT1. Immunomagnetic beads can capture the target DNMT1 in the sample, and Biotin-poly FAM can realize signal amplification. Using these strategies, we got a linear range of the system for DNMT1 level detection was from 2 nmol/L to 200 nmol/L, and the limit of detection (LOD) was 0.05 nmol/L. The method was successfully applied for the determination of DNMT1 in human plasma with the recovery of 101.3-106.0%. Therefore, this method has the potential for the detection of DNMT1 level in clinical diagnosis.
Collapse
Affiliation(s)
- Zhenzhen Wan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Gong
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Gumei Community Health Service Center, Minhang District, Shanghai 201100, China
| | - Mimi Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuming Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li'e Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaqi Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Wu Y, Darland DC, Zhao JX. Nanozymes-Hitting the Biosensing "Target". SENSORS (BASEL, SWITZERLAND) 2021; 21:5201. [PMID: 34372441 PMCID: PMC8348677 DOI: 10.3390/s21155201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Diane C. Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| |
Collapse
|
12
|
Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci 2021; 22:ijms22084247. [PMID: 33921911 PMCID: PMC8073724 DOI: 10.3390/ijms22084247] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, i.e., addition of methyl group to 5′-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.
Collapse
|
13
|
Yun W, Zhu H, Wu H, Zhuo L, Wang R, Ha X, Wang X, Zhang J, Chen H, Yang L. A "turn-on" and proximity ligation assay dependent DNA tweezer for one-step amplified fluorescent detection of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119292. [PMID: 33348097 DOI: 10.1016/j.saa.2020.119292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
A "turn-on" and proximity ligation assay dependent DNA tweezer was proposed for one-step amplified fluorescent detection of DNA. Target DNA can anneal with capture probe to form an entire long sequence. The formed long sequence can circularly open the hairpin, resulting the "turn-on" of DNA tweezers. A good linear relationship was shown from 40 pM to 20 nM with limit of detection of 10 pM. In addition, it has been successfully utilized to analysis DNA in human serum, representing a great and practical application future.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hanhong Zhu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Zhuo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruiqi Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xia Ha
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 803 Zhongshan North 1st Road, Shanghai 200083, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|