1
|
Wang L, Zhang Y, Shang C, Sun C. Effect of different substituent on the ESIPT process and fluorescence features of 2-(2-hydroxyphenyl)benzoxazole derivatives: A DFT/TD-DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124714. [PMID: 38941752 DOI: 10.1016/j.saa.2024.124714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
In this contribution, four derivatives of 5'-(para-R-Phenylene) vinyl-2-(2'-hydroxyphenyl) benzoxazole (PVHBO) were ingeniously designed by introducing two electron-withdrawing substituents and two electron-donating substituents, aiming to investigate the influence of different substituents on the photophysical properties of PVHBO and the excited state intramolecular proton transfer (ESIPT) process via the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. By utilizing the geometric parameters and the simulated infrared (IR) spectra, we compared the intramolecular hydrogen bonds (IHBs) strengths in the S0 and S1 states of the molecules. Via conducting the hole-electron analysis, the reduction in fluorescence intensity for the enol and keto forms of PVHBO, PVHBO-MeO, and PVHBO-NH2 were also well explicated. Besides, the potential energy curves (PECs) and corresponding transition state (TS) structures for both S0 and S1 states were also constructed to accurately obtain energy barriers of forward and reversed proton transfer processes. The calculated absorption and fluorescence spectra also show that PVHBO-NH2 has the largest Stokes shifts of 158 nm and 219 nm in both the enol and keto states, with a significant increase in fluorescence intensity observed upon the induction of electron-withdrawing groups. Through this work, it can provide the theoretical basis for the design of novel luminescent materials.
Collapse
Affiliation(s)
- Lei Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Jia X, Meng J, Liu Y. Theoretical Investigation on Proton Transfer Directionality and Dynamics Behavior of 3-(Benzo[ d]thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde with Two Asymmetric Proton Acceptors. J Phys Chem A 2024; 128:8096-8104. [PMID: 39265968 DOI: 10.1021/acs.jpca.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A detailed theoretical investigation on the excited state intramolecular proton transfer (ESIPT) directionality and dynamics behavior of 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde (BTHMB) with two unsymmetric proton acceptors (N and O2) has been performed. The hydrogen bond O1-H···N in BTHMB-a formed by the O1-H group with the N atom or O1-H···O2 in BTHMB-b formed by the O1-H group with the O2 atom is enhanced upon photoexcitation, and the strength of the O1-H···N bond is stronger, which will drive the O1-H proton to the N atom. Potential energy curves further confirm that ESIPT occurs in the N atom because of the smaller energy barrier (0.39 kcal/mol). Results of dynamics simulations manifest that no surface hopping exists between the S0 and S1 states within 300 fs, and ESIPT time constants of BTHMB-a and BTHMB-b are 48 and 151 fs, respectively. While the reverse ESIPT is observed in BTHMB-b at 294 fs, implying that the O1-H proton is transferred to the N atom instead of the O2 atom. The consistency of the calculated absorption (390 nm) and fluorescence spectra (443 and 602 nm) of BTHMB-a with the experimental values (390, 410, and 605 nm) confirms this conclusion again. The charge distribution analysis shows that the charge on the proton acceptors increases, and the O2 atom has higher electronegativity because it has more negative charges. The minimum surface electrostatic potential on the N atom in BTHMB-b correlating with the pKb value is -47.38 kcal/mol, indicating that the N atom has strong basicity. Therefore, the basicity of the N atom dominates the ESIPT process rather than the electronegativity of the O2 atom.
Collapse
Affiliation(s)
- Xueli Jia
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University Xinxiang, Henan 453007, PR China
| | - Ju Meng
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University Xinxiang, Henan 453007, PR China
| | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University Xinxiang, Henan 453007, PR China
| |
Collapse
|
3
|
Yan L, Guo M, Wan Y, Wan Y, Li Q, Zhu L, Yin H, Shi Y. Fluorescence emission mechanism for the π-conjugated zwitterion 2,4-Bisimidazolylphenol base on ESIPT: A TDDFT theoretical reconsideration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124043. [PMID: 38368821 DOI: 10.1016/j.saa.2024.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Molecules with zwitterionic characteristics exhibit significant potential for utilization in nonlinear optics, optoelectronics, and organic lasers owing to their large dipole moments. Recently, the synthesized compound 2,4-bis (4,5-diphenyl-1H-imidazol-2-yl) phenol (2,4-bImP) by Sakai et al. has been noticed for its unique photochromic properties in solvents [J. Phys. Chem. A, 125 (2021), 4784-4792]. The observed fluorescence in chloroform was attributed to the keto tautomer. Based on the excited state intramolecular proton transfer, the photochromism of 2,4-bImP in chloroform was interpreted as zwitterion production. However, the zwitterion with a specific electronic structure can be in resonance with the conventional neutral structure. The impact of the resonance contribution from the zwitterion and the conventional neutral structure on fluorescence attribution was not taken into account in the previous studies. In this investigation, the ESIPT mechanism of the 2,4-bImP in chloroform has been explored using both the density functional theory and the time-dependent density functional theory. The optimized geometric configuration parameters illustrate the molecular resonant properties. The calculated fluorescence spectra on the basis of the optimization results further corroborate that the fluorescence peaks after proton transfer originates from the resonance of the zwitterionic and the neutral configuration. The zwitterionic nature of the molecule was demonstrated by electrostatic potential and atomic dipole modified Hesfeld atomic charge (ADCH) analysis. Furthermore, the characterization of potential energy curves and IR spectrum further verified the resonance of both the zwitterionic and neutral structures. The results reveal that the 2,4-bImP molecule generates the neutral o-quinoid structure and the zwitterionic structure resonance phenomenon following ESIPT. The aforementioned resonance structure offers novel insights into the ascription of fluorescence. These discoveries establish the theoretical foundation for the exploration and development of zwitterions.
Collapse
Affiliation(s)
- Lu Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Meilin Guo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lixia Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Guo M, Li Q, Yan L, Wan Y, Zhu L, Li B, Yin H, Shi Y. ESIPT mechanism of triple emission with hydroxy-oxadiazole compound in DMSO: A theoretical reconsideration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122937. [PMID: 37270972 DOI: 10.1016/j.saa.2023.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
The compound in solvents with triple fluorescence feature of excited state intramolecular proton transfer (ESIPT) has a broad prospect in fluorescent probes, dye sensors and molecular synthesis of photosensitive dyes. An ESIPT molecule hydroxy-bis-2,5-disubstituted-1,3,4-oxadiazoles (compound 1a) emits two fluorescence peaks in dichloromethane (DCM) and three fluorescence peaks in dimethyl sulfoxide (DMSO). [Dyes and Pigments 197 (2022) 109927]. Two longer peaks were attributed to enol and keto emission in both solvents and the shortest third peak in DMSO was just attributed simply. However, there is a significant difference in proton affinity between DCM and DMSO solvents which has influence on the position of emission peaks. Therefore, the correctness of this conclusion needs to be further verified. In this research, density functional theory and time-dependent density functional theory method are used to explore ESIPT process. Optimized structures indicate ESIPT occurs through molecular bridge assisted by DMSO. The calculated fluorescence spectra demonstrate two peaks indeed originated from enol and keto in DCM, while interestingly three peaks are originated from enol, keto and intermediate in DMSO. Infrared spectrum, electrostatic potential and potential energy curves further prove existence of three structures. We reveal the mechanisms that compound 1a molecule occurs ESIPT in DCM solvent and undergoes an ESIPT through assisted by DMSO molecular bridge. Additionally, three fluorescence peaks in DMSO are reattributed. Our work is expected to provide an insight for understanding intra- and intermolecular interactions and synthesis of efficient organic lighting-emitting molecule.
Collapse
Affiliation(s)
- Meilin Guo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lu Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lixia Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Zhu L, Zhou Q, Cao B, Li B, Wang Z, Zhang X, Yin H, Shi Y. Theoretical reconsideration of the mechanism of the excited state proton transfer of indigo carmine in water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Su X, Zhou Q, Li Y, Cao B, Li B, Zhang X, Yin H, Shi Y. Revised the excited-state intramolecular proton transfer direction of the BTHMB molecule: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119327. [PMID: 33360566 DOI: 10.1016/j.saa.2020.119327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The spectroscopic properties of 3-(benzo[d]-thiazol-2-yl)-2-hydroxy-5-methoxy benzaldehyde molecule were investigated [J. Phys. Chem. A 2019, 123, 10246-10253]. The result shows that the excited-state intramolecular proton transfer (ESIPT) was driven toward the N center over the O center. In this research, the density functional theory and time-dependent density functional theory method were used to calculate molecule structures. Through our calculations, the ESIPT process toward N atom is proved to be feasible. Moreover, the emission peak we obtained of ESIPT process from the OH proton to aldehyde O atom is located at 564 nm, which is attributed to 500 nm in previous research. From the potential energy curves, the 0.35 kcal/mol energy barrier indicates the ESIPT process could occur when excited to S1 state from the OH proton to aldehyde O atom. In addition, the frontier molecular orbitals analysis and IR spectrum were also calculated. Finally, we revise the direction of BTHMB molecule, the two directions of ESIPT are both feasible when excited to S1 state.
Collapse
Affiliation(s)
- Xing Su
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qiao Zhou
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - You Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bifa Cao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Cao B, Li Y, Zhou Q, Li B, Su X, Yin H, Shi Y. Synergistically improving myricetin ESIPT and antioxidant activity via dexterously trimming atomic electronegativity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Absorption cross-section measurements of ortho-xylyl radical in the 460.1–475.1 nm region and investigation of its temperature and pressure dependence using cavity ringdown spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Kanlayakan N, Kungwan N. Molecular design of amino-type hydrogen-bonding molecules for excited-state intramolecular proton transfer (ESIPT)-based fluorescent probe using the TD-DFT approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj01277k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A molecular screening of a new series of NH-type molecules for ESIPT-based fluorescent probes has been carried out using time-dependent density. functional theory.
Collapse
Affiliation(s)
| | - Nawee Kungwan
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Thailand
- Center of Excellence in Materials Science and Technology
| |
Collapse
|