1
|
Lamba R, Yukta Y, Mondal J, Kumar R, Pani B, Singh B. Carbon Dots: Synthesis, Characterizations, and Recent Advancements in Biomedical, Optoelectronics, Sensing, and Catalysis Applications. ACS APPLIED BIO MATERIALS 2024; 7:2086-2127. [PMID: 38512809 DOI: 10.1021/acsabm.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Carbon nanodots (CNDs), a fascinating carbon-based nanomaterial (typical size 2-10 nm) owing to their superior optical properties, high biocompatibility, and cell penetrability, have tremendous applications in different interdisciplinary fields. Here, in this Review, we first explore the superiority of CNDs over other nanomaterials in the biomedical, optoelectronics, analytical sensing, and photocatalysis domains. Beginning with synthesis, characterization, and purification techniques, we even address fundamental questions surrounding CNDs such as emission origin and excitation-dependent behavior. Then we explore recent advancements in their applications, focusing on biological/biomedical uses like specific organelle bioimaging, drug/gene delivery, biosensing, and photothermal therapy. In optoelectronics, we cover CND-based solar cells, perovskite solar cells, and their role in LEDs and WLEDs. Analytical sensing applications include the detection of metals, hazardous chemicals, and proteins. In catalysis, we examine roles in photocatalysis, CO2 reduction, water splitting, stereospecific synthesis, and pollutant degradation. With this Review, we intend to further spark interest in CNDs and CND-based composites by highlighting their many benefits across a wide range of applications.
Collapse
Affiliation(s)
- Rohan Lamba
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Yukta Yukta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Jiban Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Ram Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi 110075, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi 110075, India
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| |
Collapse
|
2
|
Zhang J, Jia Y, Tong X, Zhou H, Zhang L, Yang Y, Ji X. Portable ratiometric fluorescence detection of Cu 2+and thiram. Methods Appl Fluoresc 2024; 12:035002. [PMID: 38587171 DOI: 10.1088/2050-6120/ad3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Food contaminants pose a danger to human health, but rapid, sensitive and reliable food safety detection methods can offer a solution to this problem. In this study, an optical fiber ratiometric fluorescence sensing system based on carbon dots (CDs) and o-phenylenediamine (OPD) was constructed. The ratiometric fluorescence response of Cu2+and thiram was carried out by the fluorescence resonance energy transfer (FRET) between CDs and 2,3-diaminophenazine (ox-OPD, oxidized state o-phenylenediamine). The oxidation of OPD by Cu2+resulted in the formation of ox-OPD, which quenched the fluorescence of CDs and exhibited a new emission peak at 573 nm. The formation of a [dithiocarbamate-Cu2+] (DTC-Cu2+) complex by reacting thiram with Cu2+, inhibits the OPD oxidation reaction triggered by Cu2+, thus turning off the fluorescence signal of OPD-Cu2+. The as-established detection system presented excellent sensitivity and selectivity for the detection of Cu2+and thiram in the ranges of 1 ∼ 100μM and 5 ∼ 50μM, respectively. The lowest detection limits were 0.392μM for Cu2+and 0.522μM for thiram. Furthermore, actual sample analysis indicated that the sensor had the potential for Cu2+and thiram assays in real sample analysis.
Collapse
Affiliation(s)
- Jiazhen Zhang
- School of Physical and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Yicong Jia
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xuan Tong
- School of Physical and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Hangyu Zhou
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Le Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Yue Yang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
- Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunmsing 650500, People's Republic of China
| | - Xu Ji
- School of Physical and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
- Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunmsing 650500, People's Republic of China
| |
Collapse
|
3
|
Liu L, Chen M, Yuan L, Mi Z, Li C, Liu Z, Chen Z, Wang L, Feng F, Wu L. A novel ratiometric fluorescent probe based on dual-emission carbon dots for highly sensitive detection of salicylic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123232. [PMID: 37562209 DOI: 10.1016/j.saa.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
In this study, a novel ratiometric fluorescence probe based on dual-emission carbon dots (CDs) for the sensitive detection of salicylic acid (SA) was constructed for the first time. The dual-emission CDs were synthesized by simple hydrothermal method using tartaric acid (TA) and m-phenylenediamine (mPD) as raw materials. In the presence of SA, the fluorescence intensity of CDs was enhanced at 499 nm, but remained basically unchanged at 439 nm. This phenomenon is caused by the intermolecular hydrogen bond interactions. The concentrations of SA had an excellent linear relationship with CDs' fluorescence intensity ratio (F499/F439) in a range of 1 ∼ 120 and 120 ∼ 240 μM with low detection limits of 0.68 and 1.05 μM. The established ratiometric fluorescent probe is economical, simple and green, and can be used for the effective detection of SA. In addition, the proposed ratiometric fluorescent probe was successfully used to monitor SA in facial mask and toning lotion samples with a satisfactory recovery of 99.7-106.7 %. The results show that the constructed fluorescent probe based on dual-emission CDs has a great potential for the rapid and sensitive analysis of SA in actual samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Lin Yuan
- Shanxi Datong University, Datong 037009, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Caiqing Li
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Zezhong Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Ligang Wang
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China; Shanxi Institute of Energy, Jinzhong 030600, PR China.
| | - Luqi Wu
- Quanzhou Normal University, Quanzhou 362000, PR China
| |
Collapse
|
4
|
Jia Z, Liu Y, Cheng L, Deng Z, Zhang M, Tuo H. Carbon dots with light-responsive oxidase-like activity for colorimetric detection of dopamine and the catalytic mechanism. Front Chem 2023; 11:1288418. [PMID: 37901159 PMCID: PMC10601655 DOI: 10.3389/fchem.2023.1288418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Dopamine is one of the most significant neurotransmitters and plays an important role in the management of cognitive functions such as learning, memory, and behavior. The disorder of dopamine is associated with many major mental diseases. It is necessary to develop selective methods for the detection of dopamine. Methods: In this work, carbon dots (CDs) were synthesized by a solvothermal route using glutathione, L-histidine, and formamide as sources. Results: Under light irradiation, The CDs convert dissolved oxygen to singlet oxygen (1O2), which could oxidize TMB. When reduced dopamine was present, it suppressed the catalysis of CDs, then the absorption of the CDs-coupled TMB complex at 652 nm was diminished. Furthermore, it was revealed that the surface groups including hydroxyl, amino, carbonyl, and carboxyl groups of CDs were related to their light-responsive catalytic activity by surface modification. In the range of 0.5-15 μM, the CDs could afford a LOD of 0.25 μM for dopamine detection with fine linearity, also showing good selectivity. Discussion: The results from fetal bovine serum indicated the good applicability of the CDs in the determination of dopamine.
Collapse
Affiliation(s)
- Zhenzhen Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuna Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Liangliang Cheng
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Hang Tuo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Kumara BN, Kalimuthu P, Prasad KS. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review. Anal Chim Acta 2023; 1268:341430. [PMID: 37268342 DOI: 10.1016/j.aca.2023.341430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| | - K S Prasad
- Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
6
|
Weishaupt AK, Kubens L, Ruecker L, Schwerdtle T, Aschner M, Bornhorst J. A Reliable Method Based on Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Quantification of Neurotransmitters in Caenorhabditis elegans. Molecules 2023; 28:5373. [PMID: 37513246 PMCID: PMC10385323 DOI: 10.3390/molecules28145373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Neurotransmitters like dopamine (DA), serotonin (SRT), γ-aminobutyric acid (GABA) and acetylcholine (ACh) are messenger molecules that play a pivotal role in transmitting excitation between neurons across chemical synapses, thus enabling complex processes in the central nervous system (CNS). Balance in neurotransmitter homeostasis is essential, and altered neurotransmitter levels are associated with various neurological disorders, e.g., loss of dopaminergic neurons (Parkinson's disease) or altered ACh synthesis (Alzheimer's disease). Therefore, it is crucial to possess adequate tools to assess precise neurotransmitter levels, and to apply targeted therapies. An established in vivo model to study neurotoxicity is the model organism Caenorhabditis elegans (C. elegans), as its neurons have been well characterized and functionally are analogous to mammals. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method including a sample preparation assuring neurotransmitter stability, which allows a simultaneous neurotransmitter quantification of DA, SRT, GABA and ACh in C. elegans, but can easily be applied to other matrices. LC-MS/MS combined with isotope-labeled standards is the tool of choice, due to its otherwise unattainable sensitivity and specificity. Using C. elegans together with our analytically validated and verified method provides a powerful tool to evaluate mechanisms of neurotoxicity, and furthermore to identify possible therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
| | - Laura Kubens
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- Inorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
| | - Tanja Schwerdtle
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10032, USA;
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
| |
Collapse
|
7
|
Nan Z, Liu H, Shi L, Zhu H, Chen J, Ilovitsh T, Wu D, Wan M, Feng Y. Ratiometric Fluorescent Detection of Ultrasound-Regulated ATP Release: An Ultrasound-Resistant Cu,N-Doped Carbon Nanosphere. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37365929 DOI: 10.1021/acsami.3c05720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Focused ultrasound, as a protocol of cancer therapy, might induce extracellular adenosine triphosphate (ATP) release, which could enhance cancer immunotherapy and be monitored as a therapeutic marker. To achieve an ATP-detecting probe resistant to ultrasound irradiation, we constructed a Cu/N-doped carbon nanosphere (CNS), which has two fluorescence (FL) emissions at 438 and 578 nm to detect ultrasound-regulated ATP release. The addition of ATP to Cu/N-doped CNS was conducted to recover the FL intensity at 438 nm, where ATP enhanced the FL intensity probably via intramolecular charge transfer (ICT) primarily and hydrogen-bond-induced emission (HBIE) secondarily. The ratiometric probe was sensitive to detect micro ATP (0.2-0.6 μM) with the limit of detection (LOD) of 0.068 μM. The detection of ultrasound-regulated ATP release by Cu,N-CNS/RhB showed that ATP release was enhanced by the long-pulsed ultrasound irradiation at 1.1 MHz (+37%, p < 0.01) and reduced by the short-pulsed ultrasound irradiation at 5 MHz (-78%, p < 0.001). Moreover, no significant difference in ATP release was detected between the control group and the dual-frequency ultrasound irradiation group (+4%). It is consistent with the results of ATP detection by the ATP-kit. Besides, all-ATP detection was developed to prove that the CNS had ultrasound-resistant properties, which means it could bear the irradiation of focused ultrasound in different patterns and detect all-ATP in real time. In the study, the ultrasound-resistant probe has the advantages of simple preparation, high specificity, low limit of detection, good biocompatibility, and cell imaging ability. It has great potential to act as a multifunctional ultrasound theranostic agent for simultaneous ultrasound therapy, ATP detection, and monitoring.
Collapse
Affiliation(s)
- Zhezhu Nan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hengyu Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Linrong Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
8
|
Clermont-Paquette A, Mendoza DA, Sadeghi A, Piekny A, Naccache R. Ratiometric Sensing of Glyphosate in Water Using Dual Fluorescent Carbon Dots. SENSORS (BASEL, SWITZERLAND) 2023; 23:5200. [PMID: 37299928 PMCID: PMC10255972 DOI: 10.3390/s23115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Glyphosate is a broad-spectrum pesticide used in crops and is found in many products used by industry and consumers. Unfortunately, glyphosate has been shown to have some toxicity toward many organisms found in our ecosystems and has been reported to have carcinogenic effects on humans. Hence, there is a need to develop novel nanosensors that are more sensitive and facile and permit rapid detection. Current optical-based assays are limited as they rely on changes in signal intensity, which can be affected by multiple factors in the sample. Herein, we report the development of a dual emissive carbon dot (CD) system that can be used to optically detect glyphosate pesticides in water at different pH levels. The fluorescent CDs emit blue and red fluorescence, which we exploit as a ratiometric self-referencing assay. We observe red fluorescence quenching with increasing concentrations of glyphosate in the solution, ascribed to the interaction of the glyphosate pesticide with the CD surface. The blue fluorescence remains unaffected and serves as a reference in this ratiometric approach. Using fluorescence quenching assays, a ratiometric response is observed in the ppm range with detection limits as low as 0.03 ppm. Our CDs can be used to detect other pesticides and contaminants in water, as cost-effective and simple environmental nanosensors.
Collapse
Affiliation(s)
- Adryanne Clermont-Paquette
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Diego-Andrés Mendoza
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Amir Sadeghi
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Alisa Piekny
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
9
|
Bhatt P, Solra M, Chaudhury SI, Rana S. Metal Coordination-Driven Supramolecular Nanozyme as an Effective Colorimetric Biosensor for Neurotransmitters and Organophosphorus Pesticides. BIOSENSORS 2023; 13:277. [PMID: 36832043 PMCID: PMC9954067 DOI: 10.3390/bios13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Analytical methods for detecting neurotransmitters (NTs) and organophosphorus (OP) pesticides with high sensitivity are vitally necessary for the rapid identification of physical, mental, and neurological illnesses, as well as to ensure food safety and safeguard ecosystems. In this work, we developed a supramolecular self-assembled system (SupraZyme) that exhibits multi-enzymatic activity. SupraZyme possesses the ability to show both oxidase and peroxidase-like activity, which has been employed for biosensing. The peroxidase-like activity was used for the detection of catecholamine NTs, epinephrine (EP), and norepinephrine (NE) with a detection limit of 6.3 µM and 1.8 µM, respectively, while the oxidase-like activity was utilized for the detection of organophosphate pesticides. The detection strategy for OP chemicals was based on the inhibition of acetylcholine esterase (AChE) activity: a key enzyme that is responsible for the hydrolysis of acetylthiocholine (ATCh). The corresponding limit of detection of paraoxon-methyl (POM) and methamidophos (MAP) was measured to be 0.48 ppb and 15.8 ppb, respectively. Overall, we report an efficient supramolecular system with multiple enzyme-like activities that provide a versatile toolbox for the construction of sensing platforms for the colorimetric point-of-care detection of both NTs and OP pesticides.
Collapse
|
10
|
Hoang NM, Ngoc NTB, Thao LTP, Tran NA, Hanh DTM, Huong PTL, Dao QD, Tu LT, Nang HX, Dao VD. Experimental synthesis of dual-emission carbon dots: The role of reaction temperature. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Fu Q, Wang C, Chen J, Wang Y, Li C, Xie Y, Zhao P, Fei J. BiPO4/BiOCl/g-C3N4 heterojunction based photoelectrochemical sensing of dopamine in serum samples. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Li X, Zhao L, Wu Y, Zhou A, Jiang X, Zhan Y, Sun Z. Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce 4+ and ratiometric detection of Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121638. [PMID: 35908499 DOI: 10.1016/j.saa.2022.121638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots have been widely focused on the field of metal ion detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and boron co-doped carbon dots (NB-CDs) are obtained by one-pot solvothermal using p-phenylenediamine and boric acid as raw materials. The NB-CDs exhibit excitation-independent emissions and the maximum emission wavelength is 597 nm at 420 nm excitation. The fluorescence can be quenched by Ce4+ effectively and selectively, and the detection range of Ce4+ is gained from 0.14 to 180 μM with a detection limit of as low as 0.14 μM. Furthermore, Al3+ can also recombine with NB-CDs surface functional groups, which shows a detection range from 1.07 to 100 μM and a detection limit of as low as 1.07 μM, accompanied with a blue-shift to 527 nm.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Liuxi Zhao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhan Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ao Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xuanfeng Jiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhengguang Sun
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
13
|
An J, Hu Y, Yang D, Han Y, Zhang J, Liu Y. pH-induced highly sensitive fluorescence detection of urea and urease based on carbon dots-based nanohybrids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120705. [PMID: 34922286 DOI: 10.1016/j.saa.2021.120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CDs) have become one of the most popular fluorescent materials due to their intriguing performance, which are favored by many fields. However, it is difficult to synthesize CDs with high quantum yield by the simple synthesis methods. In this paper, we fabricated CDs- silicon (SiO2) spheres composites via a versatile hydrothermal route. The prepared BCD-SiO2 composites exhibited an approximately 10-fold increase in the fluorescence intensity over that of BCDs. At the same time, the purification path was simplified by the facile separation of SiO2 spheres. The prepared BCD-SiO2 composites were used to fabricate a special sensing platform for the ultrasensitive detection of urea and urease, with detection limits of 1.67 μM and 0.002 mg/mL, respectively. Furthermore, this strategy was successfully applied to the detection of real samples. This result shows that as-prepared BCDs-SiO2 composites are promising for broad application to biological analysis.
Collapse
Affiliation(s)
- Jia An
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yongqin Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Da Yang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yaqin Han
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Jiajing Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Centre for NanoHealth, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
14
|
Tuan Le H, Thuy Nhi Le K, Phuong Ngo Q, Thanh Tran D, Hoon Kim N, Hee Lee J. Mo and Zn-Dual doped Cu xO nanocrystals confined High-Conductive Cu arrays as novel sensitive sensor for neurotransmitter detection. J Colloid Interface Sci 2022; 606:1031-1041. [PMID: 34487926 DOI: 10.1016/j.jcis.2021.08.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
The development of sensitive and selective sensors using facile and low-cost methods for detecting neurotransmitter molecules is a critical factor in the health care system in regard to early diagnosis. In this research, an electrocatalyst derived from Mo,Zn dual-doped CuxO nanocrystals-based layer coating over one-dimensional copper nanowire arrays (Mo,Zn-CuxO/CuNWs) was successfully designed using a facile electrodeposition approach and used as an electrochemical sensor for non-enzymatic dopamine (DA) neurotransmitter detection. The synergistic effect caused by the dual-doping effect along with its excellent conductivity produced a large electroactive surface area and an improved hetero-charge transfer, thereby boosting DA sensing ability with a low limit detection of 0.32 µM, wide-range of detection (0.5 µM - 3.9 mM), long-term stability (5 weeks), and high selectivity in phosphate buffer solution (pH 7.4). Also, the sensor accurately determined DA in real blood serum-spiked solutions. The achieved results evidenced that the Mo,Zn-CuxO/CuNWs derived sensor is highly suitable for DA detection. Therefore, it also opens new windows for the development of low-cost, accurate, high-performance, and stable sensors for other neurotransmitter sensing for the purposes of better health care and early diagnosis.
Collapse
Affiliation(s)
- Huu Tuan Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kha Thuy Nhi Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Quynh Phuong Ngo
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
15
|
Adsorption and fluorescence detection of nonylphenol in soil samples by cotton fabrics coated with molecularly imprinted polymers/carbon dots. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Fan X, Sun N, Wang S, Xu M, Zuo C, Xu X, Li Z, Sun Q, Wang Y, Liu P, Fan X. A Label‐free Electrochemiluminescence Sensing for Detection of Dopamine Based on TiO
2
Electrospun Nanofibers. ELECTROANAL 2021. [DOI: 10.1002/elan.202100502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuemei Fan
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 China
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Nan Sun
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Shumin Wang
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Min Xu
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Cheng Zuo
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Xiaojuan Xu
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Zhejian Li
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Qiangqiang Sun
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Yimeng Wang
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Ping Liu
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| | - Xinhui Fan
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 China
- College of Chemical Engineering and Modern Materials Shangluo University Shangluo 726000 China
| |
Collapse
|
17
|
A boric acid-functionalized lanthanide metal-organic gel: A ratiometric fluorescence probe with rapid and sensitive detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
19
|
Ye J, Zhou Q, Yan Z, Li K. Preparation of multicolor luminescence Schiff-base compound based on solvent control and its application in the detection of pentachloronitrobenzene. Anal Chim Acta 2021; 1178:338794. [PMID: 34482876 DOI: 10.1016/j.aca.2021.338794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Fluorescent materials with tunable optical properties are critical to their potential application. So far, the tuning of double-color luminescence has been easily achieved for many organic materials, but there are very few reports on multicolor luminescence materials. In this work, a multicolor emissions Schiff-base fluorescent compound 1,1'-{4,4'-Biphenyldiylbis[nitrilo(E)methylylidene]}di(2-naphthol) (BPDN) with an aggregation induced emission (AIE) characteristic was synthesized, and its luminescent characteristic was investigated. The BPDN molecules with low concentration in solution can emit faint light, but a new AIE phenomenon will appear when the BPDN molecules are aggregated in the solvent with low solubility or high concentration. The color and efficiency of the AIE of BPDN can be tuned by changing its aggregation state: the luminescence of the aggregate gradually redshifts (blue, green, to orange) as the solvent with poor solubility in the mixture increases or increasing the concentration of the BPDN. Based on the multicolor luminescence BPDN, a molecularly imprinted ratiometric fluorescent probe test strip (MIRF test strip) had been prepared and successfully applied to visual detection of pentachloronitrobenzene (PCNB). The color of test strip could change gradually from orange to yellow to green with the increase of the concentration of PCNB. This work shows the characteristic and application of multicolor luminescence BPDN.
Collapse
Affiliation(s)
- Jianping Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihong Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
20
|
He Q, Zhuang S, Yu Y, Li H, Liu Y. Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Anal Chim Acta 2021; 1174:338743. [PMID: 34247738 DOI: 10.1016/j.aca.2021.338743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Quick and visual detection of component contents, such as water, in a mixed solvent is important for many practical applications, and a full range detection is especially preferred. In this work, a carbon dots based ratiometric fluorescent sensor was synthesized by grafting fluorescent group (Rhodamine B, RhB) on carbon dots, and the dual emission peaks exhibited a linear ratiometric response with the change of polarity and hydrogen bond of Solvent Hansen solubility parameters. This responsive behavior is attributed to surface state photoluminescence mechanisms, and has been used for the quantitative detection of water content in ethanol with an excellent linear relationship (R2 = 0.996), a low detection limit (0.2%), and a full detection range (0-100%). Furthermore, a paper-based ratiometric fluorescence sensing strip is also demonstrated, which exhibits good storage stability and sensitivity. This study suggests that RhB grafted carbon dots could be feasibly and effectively used as ratiometric fluorescent sensors for solvent content detection.
Collapse
Affiliation(s)
- Qian He
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, 030001, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Shengyi Zhuang
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, 030001, China
| | - Yuxiu Yu
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, 030001, China
| | - Haojie Li
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, 030001, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaodong Liu
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Biocompatible sulfur nitrogen co-doped carbon quantum dots for highly sensitive and selective detection of dopamine. Colloids Surf B Biointerfaces 2021; 205:111874. [PMID: 34044332 DOI: 10.1016/j.colsurfb.2021.111874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
In this work, sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) were prepared via one-pot hydrothermal treatment of EDTA disodium and sodium sulfide. The prepared S,N-CQDs were characterized by TEM, XRD, FT-IR, XPS, UV-vis absorption and fluorescence spectra to characterize their morphology, crystal structure, functional groups, elemental composition, and optical properties. It was found that S and N elements were successfully doped into the CQDs and the morphology was approximately spherical with an average particle size of 2.16 nm, in which the excitation/emission wavelengths were 350 and 420 nm, respectively. Compared with single element doped CQDs, double element doped CQDs have a higher quantum yield and excellent optical stability. Cell experiments showed that S,N-CQDs had good biocompatibility because they had no obvious toxicity on both normal cell lines and cancer cell lines. More importantly, based on the synergy of static quenching and dynamic quenching, the S,N-CQDs were used as effective fluorescent probes for sensitive detection of DA, with high anti-interference and low limit of detection. Based on the good biocompatibility of S,N-CQDs, the detection of dopamine in actual serum samples were carried out and the results showed an excellent recovery rate. Therefore, this work provides a dopamine sensor with a practical application prospect.
Collapse
|
22
|
Zhou T, Su Z, Tu Y, Yan J. Determination of dopamine based on its enhancement of gold-silver nanocluster fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119519. [PMID: 33578121 DOI: 10.1016/j.saa.2021.119519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Dopamine (DA) is one of the most important neurotransmitters in human bodies and its sensitive detection remains a challenge. Herein, protein stabilized gold-silver nanoclusters (Au-AgNCs) were synthesized at first. It was found that the introduction of dopamine lead to a significant enhancement of the fluorescence from the nanoclusters, together with a red-shift of the peak. Through related spectroscopic and electrochemical studies, the fluorescence enhancement was attributed to the reduction of the nanoclusters by dopamine. This enhancement was then adopted for quantitative measurements, and linear responses toward dopamine in the ranges 0.01-1.7 μM and 1.7-10 μM were constructed. A limit of detection was obtained at 6.9 nM. The present study provided a facile and efficient method for the determination of dopamine, and the method was successfully applied for related measurements in serum samples.
Collapse
Affiliation(s)
- Ting Zhou
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Zhu Su
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
23
|
Zhu S, Liu L, Sun J, Shi F, Zhao XE. A ratiometric fluorescence assay for bleomycin based on dual-emissive chameleon DNA-templated silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119521. [PMID: 33581576 DOI: 10.1016/j.saa.2021.119521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The authors design dual-emissive DNA-templated silver nanoclusters (DNA-AgNCs) for ratiometric fluorescence sensing bleomycin (BLM) for the first time. A hairpin probe containing two different C-rich DNA templates at two terminals is used to synthesize chameleon DNA-AgNCs, which possess two emission peaks when they are in close proximity. A strong emission is founded at 622 nm (λex = 570 nm) while a weak one is located at 572 nm (λex = 504 nm). Meanwhile, the loop of this probe contains the scission site (5'-GC-3') of BLM. The loop can be cleaved into two parts by BLM-Fe(II) complex, inducing the two DNA-AgNCs away from each other. The fluorescence intensity at 572 nm and 622 nm increases and decreases, respectively. Such chameleon DNA-AgNCs exhibit an obvious fluorescence discoloration from orange to yellow. Therefore, a sensitive ratiometric fluorescent strategy for BLM detection has been proposed with the detection limit of 67 pM. Finally, this ratiometric method is used to detect BLM in serum samples.
Collapse
Affiliation(s)
- Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Lingyuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Fengjin Shi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
24
|
An J, Hu Y, Liu G, Chen M, Chen R, Lyu Y, Yuan M, Luo M, Liu Y. A fluorometric and colorimetric dual-signal nanoplatform for ultrasensitive visual monitoring of the activity of alkaline phosphatase. J Mater Chem B 2021; 9:2998-3004. [PMID: 33635306 DOI: 10.1039/d0tb02531c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Considering the limited sensitivity and accuracy of single-signal assay strategies, the multi-signal assay strategy has sparked significant excitement in recent years. In this study, for the first time, we reported a one-pot method in situ synthesis of carbon-containing nanoparticles (CNPs) via p-aminophenol (AP) and diethylenetriamine (DETA). The CNP solution exhibits yellow and light blue fluorescence under UV-light. Moreover, the CNPs exhibited excellent photoluminescence stability even under extreme conditions. Inspired by the alkaline phosphatase (ALP)-triggered specific catalytic reaction, we constructed an ultrasensitive fluorescence and colorimetric two-channel strategy for monitoring the ALP activity. By optimizing the detection parameters, the detection limits for both fluorometric and colorimetric were 0.05 mU mL-1. Moreover, the strategy showed high specificity and was successfully applied to monitor the ALP activity level in human serum samples. The analytical strategy opened a new window for the detection of the ALP activity, screening of the ALP inhibitor, and disease diagnosis.
Collapse
Affiliation(s)
- Jia An
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chauhan P, Chaudhary S, Bhasin K. Usage of agarose gel waste for the high yield production of carbon dots and new insight into their toxicological screening. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|