1
|
Mohammed FA, Xiao T, Wang L, Elmes RBP. Macrocyclic receptors for anion recognition. Chem Commun (Camb) 2024; 60:11812-11836. [PMID: 39323234 DOI: 10.1039/d4cc04521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Macrocyclic receptors have emerged as versatile and efficient molecular tools for the recognition and sensing of anions, playing a pivotal role in molecular recognition and supramolecular chemistry. The following review provides an overview of the recent advances in the design, synthesis, and applications of macrocyclic receptors specifically tailored for anion recognition. The unique structural features of macrocycles, such as their well-defined structures and pre-organised binding sites, contribute to their exceptional anion-binding capabilities that have led to their application across a broad range of the chemical and biological sciences.
Collapse
Affiliation(s)
- Farhad Ali Mohammed
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Leyong Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Robert B P Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, Co. Kildare, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
2
|
Neha, Verma C, Kaur N. Fluorenone-naphthyl encapsulated dual sensor for recognition of F - and Hg 2+: Syngenetic effect with drug sobisis and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125042. [PMID: 39232312 DOI: 10.1016/j.saa.2024.125042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
A novel fluorenone-naphthyl pendant sensor (FTU) possessing thiourea functionality has been synthesized via a simple condensation method and utilized for the recognition of F- and Hg2+ ions in the solution of CH3CN. The addition of F- and Hg2+ ions to the FTU solution led to the appearance of red-shifted absorption bands at 340 and 315 nm, respectively. On the other hand, in the fluorescence spectrum, the two-fold decrease in fluorescence intensity of probe FTU was observed with F- ions; while complete quenching of the fluorescence intensity was noticed with Hg2+ ions at 423 nm. The limit of detection values of F- and Hg2+ ions were found to be 1.02 & 29.1 nM, respectively, measured by UV-vis studies and 0.0185 & 0.81 nM, respectively, measured by fluorescence studies, which are less than recommended by WHO. DFT computational assessments and 1H NMR titration experiments pointed to F- induced deprotonation of thiourea NH signals. However, the chelation-enhanced quenching effect (CHEQ) was held responsible for fluorescence quenching with Hg2+ addition. Moreover, the in-situ formed FTU + F- complex was utilized for secondary sensing of drug sobisis. Furthermore, the real-world applicability of sensor FTU has been successfully scrutinized for the recognition of F- ions in the toothpaste samples. In addition, molecular docking studies revealed that FTU exhibited excellent antibacterial potency towards different gram-positive as well as negative strains.
Collapse
Affiliation(s)
- Neha
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Chetan Verma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Abstract
Sulfonamides are auspicious chemosensors which are capable to bind with ionic species through various ways like complexation, charge transfer, proton transfer etc. and produce a detection signal in the form of an optical change either in visible or UV-light and for electronic as well as fluorimetric spectra. Sulfonamides have gained much attention of analytical chemists these days as these are inexpensive, robust, green in nature and some what sensitive and selective to many anionic and cationic species. Due to their promising versatility in sensing properties, these are under great consideration in forensic, environmental, analytical and biochemistry laboratories. This review narrates how sulfonamides are being used to optically sense ionic species.
Collapse
Affiliation(s)
- Madeeha Batool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Zartashia Afzal
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Areej Hassan
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Saremi M, Kakanejadifard A, Ghasemian M, Namdari M. A colorimetric and turn-on fluorescent sensor for rapid and selective detection of Fe3+ ion based on azo compound of 4-((4-(dimethylamino) phenyl)diazenyl)-N-(pyridin-2-yl)benzamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Ahmed N, Zareen W, Shafiq Z, Figueirêdo de Alcântara Morais S, Khalid M, Albert Carmo Braga A, Shahzad Munawar K, Yong Y. A coumarin based Schiff Base: An effective colorimetric sensor for selective detection of F - ion in real samples and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121964. [PMID: 36274537 DOI: 10.1016/j.saa.2022.121964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Chemosensors are molecular devices which react with target and give a visible signal, which is a degree of its sensitivity. Herein, a novel coumarin based Schiff Base has been synthesized for F- ions detection. The chemosensor showed an intense color change upon the addition of F- ions (light yellow to purple). The chemosensor has fewer effects of competing anions. The limit of detection is calculated as low as 1.1 × 10-6 and the binding constant was determined as 1.61 × 104. The job's plot confirmed 1:1 stoichiometry between chemosensor and F- ion. The reverse reaction of chemosensor with MeOH is useful to construct a combinatorial logic circuit gates. The interaction mechanism of chemosensor was deliberated by 1H NMR, FTIR, and DFT studies. Finally, the chemosensor was useful to detect F- ions in tooth-paste sample and test strip is prepared for F- ions detection.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wajeeha Zareen
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Sara Figueirêdo de Alcântara Morais
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. LineuPrestes 748, São Paulo 05508-000, Brazil
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. LineuPrestes 748, São Paulo 05508-000, Brazil
| | | | - Ye Yong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Patel N, Modi K, Bhatt K, Mohan B, Parikh J, Liska A, Ludvik J, Patel C, Jain V, Mishra D. Cyclotriveratrylene (CTV): Rise of an untapped supramolecular prodigy providing a new generation of sensors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Sayin S. A highly selective fluorescence probe for Co2+ or Cu2+ detection based on a new tetraquinoline-substituted calix[4]arene derivative. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Miranda AS, Marcos PM, Ascenso JR, Berberan-Santos MN, Menezes F. Anion Binding by Fluorescent Ureido-Hexahomotrioxacalix[3]arene Receptors: An NMR, Absorption and Emission Spectroscopic Study. Molecules 2022; 27:3247. [PMID: 35630730 PMCID: PMC9142983 DOI: 10.3390/molecules27103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescent receptors (4a-4c) based on (thio)ureido-functionalized hexahomotrioxacalix[3]arenes were synthesised and obtained in the partial cone conformation in solution. Naphthyl or pyrenyl fluorogenic units were introduced at the lower rim of the calixarene skeleton via a butyl spacer. The binding of biologically and environmentally relevant anions was studied with NMR, UV-vis absorption, and fluorescence titrations. Fluorescence of the pyrenyl receptor 4c displays both monomer and excimer fluorescence. The thermodynamics of complexation was determined in acetonitrile and was entropy-driven. Computational studies were also performed to bring further insight into the binding process. The data showed that association constants increase with the anion basicity, and AcO-, BzO- and F- were the best bound anions for all receptors. Pyrenylurea 4c is a slightly better receptor than naphthylurea 4a, and both are more efficient than naphthyl thiourea 4b. In addition, ureas 4a and 4c were also tested as ditopic receptors in the recognition of alkylammonium salts.
Collapse
Affiliation(s)
- Alexandre S. Miranda
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal;
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Paula M. Marcos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal;
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José R. Ascenso
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Mário N. Berberan-Santos
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Filipe Menezes
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany;
| |
Collapse
|
9
|
Dalkilic O, Bozkurt E, Kilic H. Hexaphenylbenzene-based fluorescent probes for the detection of fluoride ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj04033f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Novel hexaphenylbenzene derivatives (HPB-1 and HPB-2) were synthesized and their sensing abilities were investigated.
Collapse
Affiliation(s)
- Oguzhan Dalkilic
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Ebru Bozkurt
- Program of Occupational Health and Safety, Vocational College of Technical Sciences, Atatürk University, 25240 Erzurum, Turkey
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Haydar Kilic
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|