1
|
Chen X, Zhang M, Zheng L, Deng X, Chen Q, Han W, Huang Z, Weng S. Effective Determination of Diosmin Using Nitrogen Doped Carbon Dots as Probe Based on Internal Filtering Effect. J Fluoresc 2024:10.1007/s10895-024-03963-8. [PMID: 39419896 DOI: 10.1007/s10895-024-03963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
The establishment of a convenient and efficient testing method is crucial and needed for the monitoring of diosmin. In this study, nitrogen doped carbon dots (N-CDs) with the particle size distribution of 2.5-5.7 nm and the average diameter of 4.1 nm were successfully synthesized using a simple strategy. N-CDs exhibited excellent and stable fluorescence performance with the quantum yield of 22.33%. Correspondingly, a fluorescence analytical method was developed for diosmin determination using N-CDs as probe. UV-vis absorbance spectroscopy and the evaluation of internal filtering parameters verified that the mechanism causing the quenching of N-CDs was an internal filtering effect (IFE). The concentration of diosmin can be directly evaluated based on the quenched fluorescence intensities. After optimizing experimental conditions, it was found that the fluorescence quenching efficiency ((F0-F)/F0) of N-CDs exhibited a good linear relationship with the concentration of diosmin (CDiosmin) in the range of 3.0-50 µg/mL. The limit of detection (LOD) was 0.86 µg/mL based on 3σ/slope (n = 13). This method was successfully applied to accurately determine the content of diosmin in diosmin tablets and human plasma samples with good reproducibility. It stands out for its simplicity, speed, and acceptable determination performance.
Collapse
Affiliation(s)
- Xian Chen
- Department of Pharmacy, Xiamen Humanity Hospital Affiliated to Fujian Medical University, Xiamen, 361016, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Lang Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qiang Chen
- Department of Andrology & Sexual Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Wendi Han
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
2
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
3
|
Almalki AH, Abdelazim AH, Alosaimi ME, Abduljabbar MH, Alnemari RM, Bamaga AK, Serag A. Efficient and eco-friendly detection of gabapentin using nitrogen-doped carbon quantum dots: an analytical and green chemistry approach. RSC Adv 2024; 14:4089-4096. [PMID: 38288149 PMCID: PMC10823495 DOI: 10.1039/d3ra07365c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
This study presents the development of an eco-friendly and highly selective mitrogen-doped carbon quantum dot based sensor (N-CQDs) for the detection of gabapentin - a commonly misused drug. A detailed characterization of N-CQDs spectral features and their interaction with gabapentin is provided. The optimal conditions for sensing, including pH value, buffer volume, N-CQDs concentration, and incubation time, were established. The results showed excellent fluorescence quenching at 475 nm (λex = 380 nm) due to the dynamic quenching mechanism, and the sensor demonstrated excellent linearity in the 0.5-8.0 μg mL-1 concentration range with correlation coefficients of more than 0.999, a limit of detection (LOD) of 0.160 and limit of quantification (LOQ) of 0.480 μg mL-1. The accuracy of the proposed sensor was acceptable with a mean accuracy of 99.91 for gabapentin detection. In addition, precision values were within the acceptable range, with RSD% below 2% indicating good repeatability and reproducibility of the sensor. Selectivity was validated using common excipients and pooled plasma samples. The proposed sensor accurately estimated gabapentin concentration in commercial pharmaceutical formulations and spiked plasma samples, exhibiting excellent comparability with previously published methods. The 'greenness' of the sensing system was evaluated using the Analytical GREEnness calculator, revealing low environmental impact and strong alignment with green chemistry principles with a greenness score of 0.76. Thus, the developed N-CQDs-based sensor offers a promising, eco-friendly, and effective tool for gabapentin detection in various situations, ranging from clinical therapeutics to forensic science.
Collapse
Affiliation(s)
- Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 21944 Taif Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University Health Science Campus, P. O. Box 11099 21944 Taif Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University 11751 Nasr City Cairo Egypt
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University Taif 21944 Saudi Arabia
| | - Reem M Alnemari
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Ahmed K Bamaga
- Pediatric Neurology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University Jeddah Saudi Arabia
- Division of Pediatric Neurology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre Jeddah Kingdom of Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University 11751 Nasr City Cairo Egypt
| |
Collapse
|
4
|
Fu X, Cao X, Fu Z, Huang Z, Jin W, Fu G, Bi W. Antiepileptic drug concentration detection based on Raman spectroscopy and an improved snake optimization-convolutional neural network algorithm. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6097-6104. [PMID: 37933570 DOI: 10.1039/d3ay01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A method for measurement of antiepileptic drug concentrations based on Raman spectroscopy and an optimization algorithm for mathematical models are proposed and investigated. This study uses Raman spectroscopy to measure mixed antiepileptic drugs, and an Improved Snake Optimization (ISO)-Convolutional Neural Network (CNN) algorithm is proposed. Raman spectroscopy is widely used in the identification of pharmaceutical ingredients due to its sharp peaks, no pre-treatment of samples and non-destructive detection. To analyze the spectral data precisely, a machine learning method is used in this paper. The ISO algorithm is an improved intelligent swarm algorithm in which the method of generating random solutions is improved, which can ensure that a comprehensive local search of the model is performed, the global search capability is maintained at a later stage, and the convergence speed is accelerated. In this study, 360 groups of oxcarbazepine, carbamazepine, and lamotrigine drug mixtures are measured using Raman spectroscopy, and the raw spectral data after pre-processing are trained and evaluated using ISO-CNN algorithms, and the results are compared and analyzed with those obtained from other algorithms such as the Northern Goshawk Optimization algorithm, Chameleon Swarm Algorithm, and White Shark Optimizer algorithm. The results show that the best ISO-CNN algorithm training is achieved for oxcarbazepine, with a determination coefficient and root mean square error of 0.99378 and 0.0295 for the validation set, and 0.99627 and 0.0278 for the test set. The overall results suggest that Raman spectroscopy combined with machine learning algorithms can be a potential tool for drug concentration prediction.
Collapse
Affiliation(s)
- Xinghu Fu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Xiqing Cao
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Zizhen Fu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Zhexu Huang
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Wa Jin
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Guangwei Fu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Weihong Bi
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| |
Collapse
|
5
|
Tey HY, Breadmore MC, See HH. Electrokinetic Extraction of Doxorubicin from Biological Fluids by Polymer Inclusion Membrane Sampling Probe. Anal Chem 2023; 95:2134-2139. [PMID: 36649064 DOI: 10.1021/acs.analchem.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A polymer inclusion membrane (PIM) based sampling probe was developed for electrokinetic extraction of drugs from biological fluids. The probe was fabricated by dip-coating a nonconductive glass capillary tube in a homogeneous PIM solution for three cycles. The PIM solution comprised cellulose triacetate (CTA), 2-nitrophenyl octyl ether (NPOE), and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [EMIM][NTf2] in a ratio of 5:4:2. The developed probe electrokinetically extracted doxorubicin from human plasma, human serum, and dried blood spot (DBS). The practicability and reliability of the electrokinetic extraction were evaluated by LC-MS/MS to quantify the desorption of extracted doxorubicin. Under the optimized conditions, a quantification limit of 0.2-2 ng/mL was achieved for the three biological samples. The probe was further integrated into a portable battery-powered device for safe low-voltage (36 V) electrokinetic extraction. The developed technique is envisioned to provide a more efficient analytical workflow in the laboratory.
Collapse
Affiliation(s)
- Hui Yin Tey
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Michael C Breadmore
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Hong Heng See
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
6
|
Zeid AM, Abdussalam A, Hanif S, Anjum S, Lou B, Xu G. Recent advances in microchip electrophoresis for analysis of pathogenic bacteria and viruses. Electrophoresis 2023; 44:15-34. [PMID: 35689426 DOI: 10.1002/elps.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,College of Natural and Pharmaceutical Sciences, Department of Chemistry, Bayero University, Kano, Nigeria.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab, Pakistan
| | - Saima Anjum
- Department of Chemistry, Govt. Sadiq College Women University, Bahawalpur, Pakistan
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
7
|
Advances in application and innovation of microfluidic platforms for pharmaceutical analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Mukunda DC, Joshi VK, Chandra S, Siddaramaiah M, Rodrigues J, Gadag S, Nayak UY, Mazumder N, Satyamoorthy K, Mahato KK. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence. Int J Biol Macromol 2022; 213:279-296. [DOI: 10.1016/j.ijbiomac.2022.05.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/25/2022] [Accepted: 05/22/2022] [Indexed: 01/03/2023]
|
9
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
10
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
11
|
OUP accepted manuscript. Med Mycol 2022; 60:6517703. [DOI: 10.1093/mmy/myac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 11/14/2022] Open
|
12
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|