1
|
Babagond V, Katagi KS, Akki M, Jaggal A. Colorimetric and Fluorimetric Detection of Fe(III) Using a Rhodamine-Imidazole Hydrazone Based Chemosensor: Photophysical Properties, DFT, TGA, and DSC Studies. J Fluoresc 2024:10.1007/s10895-024-03942-z. [PMID: 39325303 DOI: 10.1007/s10895-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Rhodamine-imidazole hydrazones (RIH-1 & RIH-2) based chemosensors have been synthesized. These are characterised and evaluated by FT-IR spectroscopy, 1H-NMR, 13C-NMR, LCMS, absorption and fluorescence spectroscopy. These chemosensors exhibit enhanced sensitivity and selectivity in detecting the biologically significant Fe3+ metal ion through both colorimetric and fluorescence changes. The optical properties have been investigated using binary acetonitrile-water (7:3 v/v) semi-aqueous solution. The probe RIH-1 can be deployed as a fluorescent and colorimetric probe for the detection of Fe3+ ion. It shows an absorption band at 559 nm and an intensity band at 579 nm increasing up to 50-fold with the increase in the concentration of Fe3+ with the detection limit as low as 11nM. In the visible light, RIH-1 helps in the detection of Fe3+ ion through the naked eye, while the addition of Fe3+ to the probe RIH-1 results in a colour change from colourless to pink. This is primarily due to the opening of the lactone ring in RIH-1. Notably, RIH-1 probe displays a high quantum yield of 0.51, after binding with Fe3+ ions. Indeed, it has been found that sensor RIH-1 is very effective in sensing Fe3+ ions through both fluorescence based and visual detection methods. Additionally, DFT studies of these chemosensors have been evaluated, TGA and DSC analysis showed good thermal stability.
Collapse
Affiliation(s)
- Vardhaman Babagond
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India
| | - Kariyappa S Katagi
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India.
| | - Mahesh Akki
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, Karnataka, India
| | - Ashwini Jaggal
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
2
|
Sharma H, Chaudhary S, Nirwan S, Kakkar R, Liew H, Low M, Mai C, Hii L, Leong C, Daisy Milton M. N, N’
‐Disubstituted Benzimidazolium Salts: Synthesis, Characterization, Micromolar Detection of Fe(III) ions in Aqueous system, Biological Evaluation and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Himshikha Sharma
- Functional Organic Molecules Synthesis Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Shweta Chaudhary
- Functional Organic Molecules Synthesis Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Sonam Nirwan
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Rita Kakkar
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - HuiShan Liew
- School of Postgraduate Studies and Research International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
| | - May‐Lee Low
- Department of Pharmaceutical Chemistry School of Pharmacy International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil Kuala Lumpur Malaysia
- Centre for Cancer and Stem Cell Research Institute for Research Development and Innovation International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
| | - Chun‐Wai Mai
- Department of Pharmaceutical Chemistry School of Pharmacy International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil Kuala Lumpur Malaysia
- Centre for Cancer and Stem Cell Research Institute for Research Development and Innovation International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
- State Key Laboratory of Oncogenes and Related Genes Ren Ji-Med X Clinical Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine Shanghai Jiao Tong University, 160, Pujian Road, Pudong New District 200127 Shanghai China
| | - Ling‐Wei Hii
- School of Postgraduate Studies and Research International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
- Centre for Cancer and Stem Cell Research Institute for Research Development and Innovation International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
- Department of Life Sciences School of Pharmacy International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
| | - Chee‐Onn Leong
- Centre for Cancer and Stem Cell Research Institute for Research Development and Innovation International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
- Department of Life Sciences School of Pharmacy International Medical University, 126, Jalan Jalil Perkasa 19 57000 Bukit Jalil, Kuala Lumpur Malaysia
| | - Marilyn Daisy Milton
- Functional Organic Molecules Synthesis Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
3
|
A near-infrared colorimetric and fluorometric chemodosimeter for Cu2+ based on a bis-spirocyclic rhodamine and its application in imagings. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Wang X, Huang J, Wei H, Wu L, Xing H, Zhu J, Kan C. A novel Fe3+ fluorescent probe based on rhodamine derivatives and its application in biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Ihde MH, Covey G, Johnson ADG, Fronczek FR, Wallace KJ, Bonizzoni M. The effect of outer-sphere anions on the spectroscopic response of metal-binding chemosensors. Dalton Trans 2022; 51:14079-14087. [PMID: 35975743 DOI: 10.1039/d2dt01794f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion pair receptors typically contain two separate binding sites, for the metal and the anion respectively. Here we report a less synthetically demanding approach, whereby we prepared a family of ion pair sensors based on a rhodamine fluorescent scaffold containing a tunable cation binding motif. When exposed to ion pairs, a competition for the metal ion is established between these ligands and anions. Structural and spectroscopic evidence showed that anions bind through weaker secondary interactions in the metal's outer coordination sphere and their presence influences the optical spectroscopic properties of the coordination complex in distinctive ways. The relationship between the binding site's metal affinity and its tunable properties, and the sensors' discriminatory power for anions was explained as a function of the metal ion's binding preferences. These effects were also exploited to discriminate cations and anions concurrently through multivariate data analysis methods.
Collapse
Affiliation(s)
- Michael H Ihde
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.
| | - Gabrielle Covey
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.
| | - Ashley D G Johnson
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Karl J Wallace
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA. .,Alabama Water Institute, The University of Alabama, Tuscaloosa, AL 35487-0206, USA
| |
Collapse
|
6
|
Zhang YR, Xie XZ, Yin XB, Xia Y. Flexible ligand–Gd dye-encapsulated dual-emission metal–organic framework. Dalton Trans 2022; 51:17895-17901. [DOI: 10.1039/d2dt03043h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We revealed the general considerations for host–guest ML-MOFs from the perspectives of ligands, metal nodes and embedded dyes. The results can be used to guide the preparation of other ML-MOFs to realize the host–guest strategy.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
| | - Xiao-Zheng Xie
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
| | - Xue-Bo Yin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
| | - Yan Xia
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology and TianJin key Laboratory of Biosensing, Research Center for Analytical Science and Molecular Recognition, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
7
|
Erdemir S, Alici O, Aydin D, Kocyigit O. New Fe3+ specific "turn-on" fluorescent sensor based on H2 saldien-substituted phenanthroimidazole: Fabrication and practical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|