1
|
Soufi G, Badillo-Ramírez I, Serioli L, Altaf Raja R, Schmiegelow K, Zor K, Boisen A. Solid-phase extraction coupled to automated centrifugal microfluidics SERS: Improving quantification of therapeutic drugs in human serum. Biosens Bioelectron 2024; 266:116725. [PMID: 39232434 DOI: 10.1016/j.bios.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful method in analytical chemistry, but its application in real-life medical settings has been limited due to technical challenges. In this work, we introduce an innovative approach that is meant to advance the automation of microfluidics SERS to improve reproducibility and label-free quantification of two widely used therapeutic drugs, methotrexate (MTX) and lamotrigine (LTG), in human serum. Our methodology involves a miniaturized solid-phase extraction (μ-SPE) method coupled to a centrifugal microfluidics disc with incorporated SERS substrates (CD-SERS). The CD-SERS platform enables simultaneous controlled sample wetting and accurate SERS mapping. Together with the assay we implemented a machine learning method based on Partial Least Squares Regression (PLSR) for robust data analysis and drug quantification. The results indicate that combining μ-SPE with CD-SERS (μ-SPE to CD-SERS) led to a substantial improvement in the signal-to-noise ratio compared to combining CD-SERS with ultrafiltration or protein precipitation. The PLSR model enabled us to obtain the limit of detection and quantification for MTX as 2.90 and 8.92 μM, respectively, and for LTG as 10.76 and 32.29 μM. We also validated our μ-SPE to CD-SERS method for MTX against HPLC and immunoassay (p-value <0.05), using patient samples undergoing MTX therapy. In addition, we achieved a satisfactory recovery rate (80%) for LTG when quantifying it in patient samples. Our results show the potential of this newly developed approach as a strategy for therapeutic drugs in point-of-care clinical settings and highlight the benefits of automating label-free SERS assays.
Collapse
Affiliation(s)
- Gohar Soufi
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.
| | - Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Laura Serioli
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Raheel Altaf Raja
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, 2100, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, 2100, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| |
Collapse
|
2
|
Badillo-Ramírez I, Janssen SAJ, Soufi G, Slipets R, Zór K, Boisen A. Label-free SERS assay combined with multivariate spectral data analysis for lamotrigine quantification in human serum. Mikrochim Acta 2023; 190:495. [PMID: 38036694 PMCID: PMC10689517 DOI: 10.1007/s00604-023-06085-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Considering the need for a more time and cost-effective method for lamotrigine (LTG) detection in clinics we developed a fast and robust label-free assay based on surface-enhanced Raman scattering (SERS) for LTG quantification from human serum. The optimization and application of the developed assay is presented showing the: (i) exploration of different methods for LTG separation from human serum; (ii) implementation of a molecular adsorption step on an ordered Au nanopillar SERS substrate; (iii) adaptation of a fast scanning of the SERS substrate, performed with a custom-built compact Raman spectrometer; and (iv) development of LTG quantification methods with univariate and multivariate spectral data analysis. Our results showed, for the first time, the SERS-based characterization of LTG and its label-free identification in human serum. We found that combining a miniaturized solid phase extraction, as sample pre-treatment with the SERS assay, and using a multivariate model is an optimal strategy for LTG quantification in human serum in a linear range from 9.5 to 75 μM, with LoD and LoQ of 3.2 μM and 9.5 μM, respectively, covering the suggested clinical therapeutic window. We also showed that the developed assay allowed for quantifying LTG from human serum in the presence of other drugs, thereby demonstrating the robustness of label-free SERS. The sensing approach and instrumentation can be further automated and integrated in devices that can advance the drug monitoring in real clinical settings.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark.
| | - Selina A J Janssen
- Molecular Biosensing for Medical Diagnostics (MBx), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Gohar Soufi
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Roman Slipets
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| |
Collapse
|
3
|
Sefid-Sefidehkhan Y, Mokhtari M, Jouyban A, Khoshkam M, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rahimpour E. A smartphone digital image colorimetric method based on nanoparticles for determination of lamotrigine. Bioanalysis 2023; 15:915-926. [PMID: 37431823 DOI: 10.4155/bio-2023-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Aim: A colorimetric approach for quantification of lamotrigine using spectrophotometric and smartphone image analysis is described in this study. Methods: For full optimization and validation procedures, UV-visible spectroscopy was used, and image analysis was carried out with the help of an app (PhotoMetrix PRO®). Then, as a multivariate calibration method, parallel factor analysis was used for data analysis. Results: The results demonstrated the capacity of these methods to estimate lamotrigine concentrations in the range of 0.1-7.0 μg.ml-1 in exhaled breath condensate, indicating the value of using digital images and smartphone applications in combination with chemometric tools. Conclusion: The image analysis can be superior for its fast and reliable lamotrigine analysis in biological samples.
Collapse
Affiliation(s)
- Yasaman Sefid-Sefidehkhan
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, 1313156199, Iran
| | - Mehdi Mokhtari
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
| | - Maryam Khoshkam
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, 1313156199, Iran
| | - Maryam Khoubnasabjafari
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| |
Collapse
|
4
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
A deep eutectic solvent-based microextraction procedure for simple and fast extraction of doxorubicin as an anticancer drug from urine samples followed by 96-well microplates-based spectrophotometric detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Heidari H, Sadi S. Hydrophobic deep eutectic solvent‐based microextraction method for the simultaneous extraction of two benzodiazepines from saliva samples before determination by 96‐well microplates‐based spectrophotometer with the aid of chemometrics. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hassan Heidari
- Department of Chemistry Azarbaijan Shahid Madani University Tabriz Iran
| | - Sevda Sadi
- Department of Chemistry Azarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
7
|
Yan J, Ma S, Feng M, Zheng J, Guo M. Hydrophobic deep eutectic solvent-based ultrasonic-assisted liquid-liquid microextraction combined with GC for eugenol, isoeugenol, and methyl isoeugenol determination in aquatic products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1718-1730. [PMID: 35997563 DOI: 10.1080/19440049.2022.2112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The use of deep eutectic solvents (DESs) has great prospects because of the green and efficient characteristics, which can be used for developing analytical methods for foods. In this research, assisted by ultrasonic waves, a liquid-liquid microextraction detection method combined with gas chromatography was established for three anaesthetics (eugenol, isoeugenol, and methyl isoeugenol) in aquatic food. The processing conditions including the components, ratio of hydrogen bond acceptor and hydrogen bond donor, DES volume, ultrasonic time, and pH were evaluated and optimised to improve the extraction efficiency, which was based on the DES structures and properties. In-house method validation was carried out by applying to real samples. A Thymol: levulinic acid DES (with a molar ratio of 1:2) was used as the extractant and the recoveries were as high as 93-101% for eugenol, 90-100% for methyl isoeugenol, and 86-94% for isoeugenol with RSDs <5% under optimum conditions. The limit of detection and quantification of the eugenol compounds were 0.08-0.10 μg/mL and 0.26-0.33 μg/mL, respectively. The method has green credentials and comparable LOD to homologous apparatus, which can be used for the determination of eugenol components in aquatic food.
Collapse
Affiliation(s)
- Jiaze Yan
- College of Environment and Chemical Engineering, Dalian University, Dalian, China.,Dalian Harmony Medical Diagnosis Laboratory Co., Ltd, Dalian, China
| | - Shaomin Ma
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Mingrui Feng
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Jiqi Zheng
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Ming Guo
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| |
Collapse
|
8
|
Andruch V, Varfalvyová A, Halko R, Jatkowska N, Płotka-Wasylka J. Application of deep eutectic solvents in bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Alipour Z, Haghighi B, Kamyabi MA. A novel electrochemiluminesence sensor based on silver prussian blue analogue/carboxylated sulfur‐doped graphitic carbon nitride nanocomposite for determination of lamotrigine. ELECTROANAL 2022. [DOI: 10.1002/elan.202100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Bazrafshan E, Dadfarnia S, Haji Shabani AM, Afsharipour R. Determination of lamotrigine by fluorescence quenching of N-doped graphene quantum dots after its solid-phase extraction using magnetic graphene oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120530. [PMID: 34740000 DOI: 10.1016/j.saa.2021.120530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A sensitive fluorescent nanoprobe is reported for the determination of lamotrigine after its preconcentration by magnetic graphene oxide nanocomposite. The fluorescent nanoprobe is based on the quenching effect of lamotrigine on the nitrogen graphene quantum dots fluorescence at 440 nm, through strong hydrogen bonding. Under optimum conditions, the quenching fluorescent intensity of nitrogen graphene quantum dots shows linearity with the lamotrigine concentration in the range of 2.0-45.0 µg L-1, limits of detection (LOD), and quantification of 0.39 and 1.28 µg L-1 respectively. The parameters affecting the extraction and determination of lamotrigine were optimized via the central composite design (CCD) and one at the time method, respectively. The developed method was successfully employed for the extraction and quantification of lamotrigine in biological samples.
Collapse
Affiliation(s)
- Elham Bazrafshan
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 98195-741, Iran
| | - Shayessteh Dadfarnia
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 98195-741, Iran.
| | | | - Roya Afsharipour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 98195-741, Iran
| |
Collapse
|
11
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Yahya M, Kesekler S, Durukan İ, Arpa Ç. Determination of prohibited lead and cadmium traces in hair dyes and henna samples using ultrasound assisted-deep eutectic solvent-based liquid phase microextraction followed by microsampling-flame atomic absorption spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1058-1068. [PMID: 33570530 DOI: 10.1039/d0ay02235g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study ultrasound assisted-deep eutectic solvent-based liquid phase microextraction followed by microsampling-flame atomic absorption spectrometry was developed to determine prohibited lead and cadmium traces in hair dye and henna samples. For this purpose, deep eutectic solvent, prepared from choline chloride and phenol, was used as an extraction solvent, dithizone was used as a complexing agent, and THF was used as an aprotic solvent. All parameters that affect extraction efficiency, such as pH, the DES volume and composition, the extraction time, the amount of dithizone, were optimized. Under the optimal conditions, for Pb(ii) and Cd(ii), enhancement factors of 92 and 57, LODs of 2.5 μg L-1 and 0.75 μg L-1, LOQs of 7.8 μg L-1 and 2.5 μg L-1, linear working ranges of 10-250 μg L-1 and 2.5-50 μg L-1, were obtained, respectively. Relative standard deviation (n = 10) was calculated to be 2.7 for 100 μg L-1 of Pb(ii) and 2.1 for 25 μg L-1 of Cd(ii). The matrix effect was investigated by comparing the solvent-based calibration curve with the matrix-matched calibration curve. The determination of lead and cadmium in hair dye and henna samples without being affected by the sample matrix was successfully performed. The lead content was between 1.3 and 6.5 μg g-1, and the cadmium content was between 0.028 and 0.54 μg g-1 for the selected hair dye and henna samples.
Collapse
Affiliation(s)
- Maha Yahya
- Chemistry Department, Hacettepe University, 06800, Beytepe, Ankara, Turkey.
| | - Sare Kesekler
- Chemistry Department, Hacettepe University, 06800, Beytepe, Ankara, Turkey.
| | - İlknur Durukan
- Environmental Engineering Department, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Çiğdem Arpa
- Chemistry Department, Hacettepe University, 06800, Beytepe, Ankara, Turkey.
| |
Collapse
|