1
|
Li Y, Li F, Yu Z, Tamilavan V, Oh CM, Jeong WH, Shen X, Lee S, Du X, Yang E, Ahn Y, Hwang IW, Lee BR, Park SH. Effective Small Organic Molecule as a Defect Passivator for Highly Efficient Quasi-2D Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308847. [PMID: 38174599 DOI: 10.1002/smll.202308847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.
Collapse
Affiliation(s)
- Ying Li
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fuqiang Li
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhongkai Yu
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Chang-Mok Oh
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Woo Hyeon Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xinyu Shen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Seongbeom Lee
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
| | - Xiangrui Du
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Eunhye Yang
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yoomi Ahn
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - In-Wook Hwang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bo Ram Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung Heum Park
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
2
|
Wei Y, Li Y, Zhou G, Liu G, Leng X, Xia Q. The charge-transfer states and excitation energy transfers of halogen-free organic molecules from first-principles many-body Green's function theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121925. [PMID: 36244154 DOI: 10.1016/j.saa.2022.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The organic solar cells based on halogen-free components, have been the new favorites to develop green and renewable energy. PBDB-T and its derivatives are considered the superior electron donors to construct the solar cells. Although there are plenty of researches about them, the charge-transfer mechanisms and excitation energy transfers of relative organic solar cells are still unclear, the developments of photovoltaic devices are restricted consequently. In this work, we calculate the electronic structures and excited-state properties of PBDB-T, PBT1-C, PBT1-O and PBT1-S donors in the gas phase from the many-body Green's function theory. With BTP-IC and BTP-IS as the acceptors, we consider the Förster, Dexter, and overlap electronic couplings to compute the excitation energy transfers of the dimers. The ionization energies and excited-state energies of the four donors calculated by GW + BSE are in good agreement with experiments, and they are sensitive to the functionals in the computation. We find two charge transfer schemes. The thienyl of PBDB-T molecule makes its charge-transfer state at the lowest energy, and the total electronic coupling of PBDB-T based dimer is the strongest. The Dexter, and overlap types electronic couplings are significant to study the excitation energy transfer of organic heterojunctions. We provide a theoretical guide in the design and synthesis of higher-performance halogen-free donors.
Collapse
Affiliation(s)
- Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Guangli Zhou
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xia Leng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Qiying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| |
Collapse
|
3
|
Liang Q, Hu Z, Yao J, Yin Y, Wei P, Chen Z, Li W, Liu J. Recent advances in intermixed phase of organic solar cells: Characterization, regulating strategies and device applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiuju Liang
- Northwestern Polytechnical University Xi'an China
| | - Zhangbo Hu
- Northwestern Polytechnical University Xi'an China
| | - Jianhong Yao
- Northwestern Polytechnical University Xi'an China
| | - Yukai Yin
- Northwestern Polytechnical University Xi'an China
| | - Puxin Wei
- Northwestern Polytechnical University Xi'an China
| | - Zhikang Chen
- Northwestern Polytechnical University Xi'an China
| | - Wangchang Li
- Northwestern Polytechnical University Xi'an China
| | - Jiangang Liu
- Northwestern Polytechnical University Xi'an China
| |
Collapse
|
4
|
Oh CM, Lee J, Park SH, Hwang IW. Enhanced Charge Separation in Ternary Bulk-Heterojunction Organic Solar Cells by Fullerenes. J Phys Chem Lett 2021; 12:6418-6424. [PMID: 34236208 DOI: 10.1021/acs.jpclett.1c01496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carrier generation dynamics in binary PTB7-Th:COi8DFIC (1:1.5) and ternary PTB7-Th:COi8DFIC:PC71BM (1:1.05:0.45) composites were investigated to identify the origins of high power conversion efficiencies (PCEs) in ternary bulk-heterojunction (BHJ) organic solar cells. Steady-state photoluminescence and time-resolved photoinduced absorption spectroscopic analyses revealed that the ternary composite exhibited faster hole transfer from COi8DFIC to PTB7-Th (8 ps compared to 21 ps in the binary composite), which led to an improved exciton separation yield in COi8DFIC (94% compared to 68% in the binary composite). Improved intermixing of the component materials and efficient electron transfer from COi8DFIC to PC71BM facilitated enhancement in the hole transfer rate. The COi8DFIC-to-PC71BM electron transfer promoted an electron transport cascade over PTB7-Th, COi8DFIC, and PC71BM, which efficiently deactivated back-electron transfer (carrier recombination loss) from COi8DFIC to PTB7-Th at ∼160 ps and assisted in improving the PCE of the ternary BHJ cell (13.4% compared to 10.5% in the binary BHJ cell).
Collapse
Affiliation(s)
- Chang-Mok Oh
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jihoon Lee
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung Heum Park
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - In-Wook Hwang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|