1
|
Tiwari OS, Rawat V, Rencus-Lazar S, Gazit E. Phenylalanine-embedded carbazole-based fluorescent 'turn-off' chemosensor for the detection of metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125277. [PMID: 39423558 DOI: 10.1016/j.saa.2024.125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Fluorescent chemosensors are highly important for various applications including medical diagnostics, environmental monitoring, and industrial processing. Significant advancements have been made to produce sensors capable of detecting biologically and environmentally relevant ions. Specifically, carbazole-derived fluorophores are chemically stable agents with the ability to detect anions, cations, and small bioorganic molecules. However, most carbazole-based fluorescent probes for the detection of metal ions are Schiff bases and require stringent pH control to prevent hydrolysis. On the other hand, amide-based sensors that utilize stable amino acid scaffolds provide a robust sensing platform as well as a soft-chemical environment for detecting both soft and heavy metal ions. Herein, we explored an aromatic amino acid Phe-containing carbazole-based "turn-off" fluorescent chemosensor to improve the sensor specificity using π-conjugation and additional binding sites. The structure of the novel chemosensor was characterized by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, the sensing properties towards metal ions were studied using UV-vis and fluorescence spectroscopy. Among the various metal ions tested, the chemosensor showed high selectivity and sensitivity towards Co2+, Ni2+, and Cu2+ ions. The detection limits for Co2+, Ni2+, and Cu2+ ions were found to be 4.78 µM, 3.50 µM, and 5.17 µM respectively. Furthermore, the interaction of Phe-amino-carbazole with the various tested metal ions resulted in a flakes-like supramolecular structure, similar to the native Phe-amino-carbazole, whereas the interaction of the designed chemosensor with the Pb2+ metal ion resulted in a uniform 3D-circular disc-like supramolecular structure, as confirmed by electron microscopy experiment. This highlights the potential of the Phe-containing carbazole-derived chemosensor for the detection of multiple cations with a decrease in the fluorescence response with a lower detection limit.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Varun Rawat
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
2
|
Yang Y, Jiang Y, Jiang H, Qi X, Zhu L, Ju Y, Wang Y, Peng Y, Mei Y, Khant Zaw H, Smruti Mohanty S, Abishek B, Zhou Z, Tang J, Zhang Z. A pH switchable hydrophilic fluorescent BODIPY sodium disulfonate for Fe 3+ multicolor detection: Experimental and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124993. [PMID: 39159512 DOI: 10.1016/j.saa.2024.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
BODIPY-based chemosensors are widely used owing to merits like good selectivity, high fluorescence quantum yield, and excellent optical stability. As such, a pH-switchable hydrophilic fluorescent probe, BODIPY-PY-(SO3Na)2, was developed for detection of Fe3+ ion in aqueous solutions. BODIPY-PY-(SO3Na)2 revealed strong fluorescence intensity and was responsive to pH value in the range of 6.59-1.96. Additionally, BODIPY-PY-(SO3Na)2 showed good selectivity and sensitivity towards Fe3+. A good linear relationship for Fe3+ detection was obtained from 0.0 μM to 50.0 μM with low detecting limit of 6.34 nM at pH 6.59 and 2.36 nM at pH 4.32, respectively. The response to pH and detection of Fe3+ induced obvious multicolor changes. BODIPY-PY-(SO3Na)2 can also be utilized to quantitatively detect Fe3+ in real water sample. Different mechanisms of Fe3+ detection at investigated pH values were unraveled through relativistic density functional theory (DFT) calculations in BODIPY-PY-(SO3Na)2 and experiments of coexisting cations, anions and molecules. These results enabled us to gain a deeper understanding of the interactions between BODIPY-PY-(SO3Na)2 and Fe3+ and provide valuable fundamental information for design of efficient multicolor chemosensors for Fe3+ as well.
Collapse
Affiliation(s)
- Yi Yang
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Yiyang Jiang
- The First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiuxiu Qi
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Li Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Ju
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Peng
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yang Mei
- The First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hein Khant Zaw
- School of International Education, Nanjing Medical University, Nanjing 211166, China
| | - Shreya Smruti Mohanty
- School of International Education, Nanjing Medical University, Nanjing 211166, China
| | - B Abishek
- School of International Education, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Zhou
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Jie Tang
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Zhenqin Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Sharif S, Shahbaz M, Şahin O, Khurshid MA, Anbar MM, Dar B. Synthesis, Crystal Structure and Fluorimetric Study of 2-phenylphthalazin-1(2H)-one: a Highly Selective Florescent Chemosensor for Detection of Fe 3+ and Fe 2+ Metal Ions. J Fluoresc 2024; 34:2783-2791. [PMID: 37910270 DOI: 10.1007/s10895-023-03484-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
A ligand, 2-phenylphthalazin-1(2H)-one (K), was synthesized by refluxing 2-formylbenzoic acid with phenyl hydrazine in presence of ethanol. FTIR, elemental analysis and single crystal XRD techniques were used to elucidate the structure. Fluorimetric turn-off response was recorded when solution of ligand (K) in DMF was treated with aqueous solution of Fe3+ and Fe2+ metal ions. No specific changes were observed on addition of other metal ions (Pb2+, Cd2+, Mn2+, Zn2+, Ba2+, Ni2+, Al3+, Ag1+, Co2+, Ca2+, Cu2+, Mg2+, Cr3+). Limit of Detection (LOD) was calculated for Fe2 and Fe3+as 2.4 µM and 2.5µM respectively, which is quite below to the recommended value 5.4 µM of the Environment Protection Agency of USA. Association constants for Fe3+ and Fe2+ metal ions were determined as 6 × 10-4 M-1 and 3.6 × 10-4 M-1 respectively. Benesi-Hildebrand plot confirmed 1:1 binding ratio between metal ions and ligand.
Collapse
Affiliation(s)
- Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan.
| | - Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000, Sinop, Turkey
| | - Muhammad Aqib Khurshid
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Maryam Musaffa Anbar
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Birra Dar
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Ömeroğlu İ, Sanko V, Şenocak A, Tümay SO. The preparation of a fluorescent dual-modality nanosensor for the discrimination and determination of biothiols in real samples and its practical detection kit. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7210-7223. [PMID: 39315914 DOI: 10.1039/d4ay01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Biothiols widely exist in living organisms and have a crucial function of maintaining redox balance in the human body. It is vital yet difficult to develop probes that can simultaneously detect and distinguish biothiols. In this study, a highly sensitive dual-modality nanosensor, NBD-Nap@NCC, was developed for the discrimination and determination of biothiols in real samples, and its practical application was elucidated based on RGB analysis using a smartphone. The sensitive nanosensor was successfully prepared through the surface modification of nanocrystalline cellulose (NCC), combining NBD and naphthalene fluorophores. Owing to the high electron-withdrawing behavior of the NBD group, which led to a PET mechanism between the fluorophores, the prepared NBD-Nap@NCC nanosensor had a very weak fluorescence response. However, after treatment with Hcy or Cys, NBD-Nap@NCC quickly provided remarkable and different rates of fluorescence "turn-on" responses in both blue and green channels, which was attributed to naphthalene and NBD fluorophores as a result of the inhibition of the PET mechanism. However, after treatment with GSH, only a significant blue-channel emission, which was attributed to the naphthalene fluorophore was obtained, indicating the inhibition of the PET mechanism. Furthermore, the NCC platform demonstrated improved sensitivity and selectivity because of the increased surface area and higher number of binding sites due to modification of the NBD group on the surface. The detection limit ranged from 0.910 to 1.150 μmol L-1 for biothiols with a large dynamic response range. The accuracy of the sensor in determining the concentrations of Hcy, Cys, and GSH in real samples was evaluated via HPLC and spike/recovery analysis. Additionally, paper-based analysis kits were fabricated for the practical detection of biothiols based on RGB changes using a smartphone application.
Collapse
Affiliation(s)
- İpek Ömeroğlu
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Vildan Sanko
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
- Department of Chemistry, Hacettepe University, Ankara, 06800, Türkiye
- METU MEMS Center, Ankara, 06530, Türkiye
| | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
- Department of Chemistry, Atatürk University, Erzurum, 25240, Türkiye.
| |
Collapse
|
5
|
Anusuyadevi K, Bose AC, Velmathi S. Single Step Solid State Synthesis of Carbon Nanoparticles for Instantaneous Detection of Fe (III) in Water Samples. J Fluoresc 2024; 34:2219-2227. [PMID: 37726503 DOI: 10.1007/s10895-023-03437-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Though iron is one of the vital micronutrients in biological systems excess of which is associated with various illness. Consumption of contaminated water and crops because of its extensive industrial utility is one of the major sources for excess iron in living beings. Hence, we have designed a sensor based on carbon nanoparticles for the detection of Fe (III) and we have also attempted to estimate Fe (III) in spiked water samples. Carbon nanoparticles (CNP) with quantum yield of 40.2 % was synthesized by solid state synthesis from aromatic molecular precursors unlike conventional synthesis methodology. The particle size, stability and optical properties of CNP were investigated by microscopic and spectroscopic techniques. CNP manifested a naked color change from colorless to yellow in presence of Fe (III) and 72 % of CNP's emission was quenched at 487 nm on excitation at 377 nm by Fe (III). The detection time was less than a second and limit of detection was calculated as 0.248 µM. The mechanistic aspect of detection was investigated and applicability of CNP was examined in spiked water samples.
Collapse
Affiliation(s)
- Kathiresan Anusuyadevi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Arumugam Chandra Bose
- Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
6
|
Dhanshri S, Vardhan S, Sahoo SK. Copper(II) Driven Fluorescence switch-on Detection of Ovalbumin and GSH Using a Pyridoxal 5'-phosphate Derived Tetradentate Schiff Base and its Applications. J Fluoresc 2024:10.1007/s10895-024-03735-4. [PMID: 38662255 DOI: 10.1007/s10895-024-03735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The facile detection of glutathione (GSH) and ovalbumin (OVA) is of great importance in biological research. Herein, a tetradentate Schiff base N, N'-bis(pyridoxal-5-phosphate)-o-phenylenediamine (L) obtained by condensing two moles of pyridoxal 5'-phosphate (PLP) with one mole of 1,2-phenylenediamine was employed for the fluorescence switch-on detection of GSH and OVA. When excited at 389 nm, receptor L showed a weak emission at 454 nm in an aqueous medium. The addition of GSH to the solution of L caused a significant fluorescence enhancement at 454 nm. Amino acids (leucine, glycine, serine, tryptophan, homocysteine, alanine, methionine, arginine and proline) and albumins (bovine serum albumin and OVA) failed to alter the fluorescence profile of L. Receptor L can be applied to detect GSH down to 1.16 µM. However, the fluorescence emission of L was quenched upon the formation of the L-Cu2+ complex. The addition of GSH and OVA to the in-situ formed L-Cu2+ complex restored not only the fluorescence emission of L but also a noticeable fluorescence enhancement observed at 454 nm. The decomplexation of L-Cu2+, along with the interaction of L with GSH and OVA is expected to suppress the conformational flexibility of L that enhanced the fluorescent intensity at 454 nm. Using L-Cu2+ complex, the concentration of OVA and GSH can be detected down to 0.31 µM and 0.20 µM, respectively. Molecular docking and dynamics simulation were performed to analyze the binding mode, conformational flexibility and dynamic stability of the L-Cu2+-OVA complex. Finally, the analytical novelty of L-Cu2+ was examined by detecting GSH/OVA in real biological samples, such as human blood serum, urine, and egg white.
Collapse
Affiliation(s)
- Sonkeshriya Dhanshri
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
7
|
Song J, Liu X, Zhang X, Fan J, Zhang R, Feng X. A smartphone-assisted paper-based ratio fluorescent probe for the rapid and on-site detection of tetracycline in food samples. Talanta 2023; 265:124874. [PMID: 37356193 DOI: 10.1016/j.talanta.2023.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Rapid, sensitive and portable analytical methods for on-site detection of tetracycline (TC) in food samples is of critical importance for food safety and public health. In this study, a dual-emission ratio fluorescent probe (Gd0.9@Eu0.1) was prepared and utilized for the detection of tetracycline (TC) by observing the fluorescence color change from blue to red. The detection process exhibits a wide linear range (0-52.0 μM), good selectivity and low detection limit (14 nM). A paper-based probe and a colorimetric card was constructed for the visual detection of TC. Furthermore, a novel and portable detection platform combining smartphone and test strip was exploited for the quantitative and on-site detection of TC in real pork sample. The developed method was validated through intra- (n = 5) and inter-day (n = 2) measurements, as well as comparison with a traditional HPLC method. These statistical result validate the reliability and accuracy of the developed method. This intelligent detection platform represents a promising approach for the rapid, sensitive and visual detection of TC in food samples.
Collapse
Affiliation(s)
- Junya Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China.
| | - Jinling Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Rui Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
8
|
Wang N, Zhang L, Li Z, Zhou C, Lv Y, Su X. A sensing platform for on-site detection of glutathione S-transferase using oxidized Pi@Ce-doped Zr-based metal-organic frameworks(MOFs). Talanta 2023; 259:124537. [PMID: 37054620 DOI: 10.1016/j.talanta.2023.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
The development of point-of-care testing (POCT) for glutathione S-transferase (GST) is an effective way to establish the mechanism of targeted monitoring of cancer chemotherapy drug metabolism. Assays for GST with high sensitivity as well as on-site screening have been urgently required to monitor this process. Herein, we synthesized oxidized Pi@Ce-doped Zr-based metal-organic frameworks (MOFs) by electrostatic self-assembly between phosphate and oxidized Ce-doped Zr-based MOFs. It was found that the oxidase-like activity of oxidized Pi@Ce-doped Zr-based MOFs was substantially increased after phosphate ion (Pi) assembly. And a stimulus-responsive hydrogel-based kit was constructed by embedding oxidized Pi@Ce-doped Zr-based MOFs into a PVA (polyvinyl alcohol) hydrogel system, we integrated a portable hydrogel kit with a smartphone for real-time monitoring of GST for quantitative and accurate analysis. The color reaction was triggered based on oxidized Pi@Ce-doped Zr-based MOFs with 3,3',5,5'-tetramethylbenzidine (TMB). However, in the presence of glutathione (GSH), the above color reaction was hindered due to the reducibility of GSH. Catalyzed by GST, GSH can react with 1-chloro-2,4-dinitrobenzo (CDNB) to form an adduct, which caused the color reaction to occur again, resulting in the color response of the kit. In combination with ImageJ software, the kit image information acquired by smartphone could be converted into hue intensity, providing a direct quantitative tool for the detection of GST with a detection limit of 0.19mU·L-1. Based on the advantages of simple operation and cost-effectiveness, the introduction of the POCT miniaturized biosensor platform will meet the requirements of on-site quantitative analysis of GST.
Collapse
Affiliation(s)
- Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lijun Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Zhengxuan Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Tümay SO, Şenocak A, Çoşut B, Alidağı HA, Yeşilot S. A water-soluble small molecular fluorescent sensor based on phosphazene platform for selective detection of nitroaromatic compounds. Photochem Photobiol Sci 2023:10.1007/s43630-023-00388-3. [PMID: 36807055 DOI: 10.1007/s43630-023-00388-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2023] [Indexed: 02/21/2023]
Abstract
Nitro-aromatic compounds have a deleterious effect on the environment and they are extremely explosive. Therefore, societal concern about exposure to nitro-aromatic compounds encourages researchers to develop selective and sensitive detection platforms for nitro-aromatic compounds in recent years. In this paper, a new 100% water-soluble cyclotriphosphazene-based bridged naphthalene material (4) was prepared as a small molecule fluorescent sensor for ultra-selective detection of nitro-aromatic compounds. The chemical structure of 4 was extensively characterized by mass spectrometry and nuclear magnetic resonance spectroscopies (31P, 13C, 1H). The photo-physical properties of the newly developed sensing system were investigated by steady-state fluorescence and UV-Vis absorption spectroscopies. The fluorescence sensor behaviors were extensively evaluated after treatment with the most commonly used metal cations, anions, competitive aromatic compounds, saccharides, and organic acids. The developed fluorescent sensing system (4) demonstrated ultra-selective fluorescence "turn-off" signal change toward nitro-aromatic compounds while other tested competitive species caused negligible changes. To evaluate selectivity, time-resolved, steady-state 3D-fluorescence and UV-Vis absorption spectroscopies were used in fully aqueous media. Moreover, theoretical calculations (density functional theory and time-dependent density functional theory) were applied and discussed to identify fluorescence sensing mechanisms toward nitroaromatic compounds for the presented sensing system.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Bünyemin Çoşut
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | | | - Serkan Yeşilot
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey.
| |
Collapse
|
10
|
Xu J, Xu J, Tong Z, Du B, Liu B, Mu X, Guo T, Yu S, Liu S, Gao C, Wang J, Liu Z, Zhang P. Performance of feature extraction method for classification and identification of proteins based on three-dimensional fluorescence spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121841. [PMID: 36179565 DOI: 10.1016/j.saa.2022.121841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional excitation emission matrix (EEM) fluorescence spectroscopy was employed to discriminate protein samples comprising bovine serum albumin, neurotensin, ovalbumin, ricin, trypsin from bovine pancreas and trypsin from porcine pancreas. Two methods of feature extraction with and without parameterization were applied to the spectral data in order to evaluate their performance of discrimination between protein samples. The discrimination of protein samples was conducted by k-means clustering algorithm and eigenvalue extracting procedure based on principal component analysis (PCA). It was found that the method of feature extraction without parameterization performed best, correctly attributing 100% of the spectral data in the condition of two principal components (PCs) captured. Features extracted with spectral parameterization failed to separate ricin and trypsin from bovine pancreas in same condition. Without spectral parameterization, less dimensionality and unique principal components captured by PCA indicates the spectrally-resolved features of corresponding protein samples. By clustering using each spectrum at fixed excitation wavelength, excitation wavelengths matched with common intrinsic fluorophores were found to be more sensitive to the classification accuracy. Contributions of spectral features extracted from EEM to the principal components were discussed and demonstrated their feature differentiation capabilities among six protein samples. These results reveal that appropriate extraction approach of features in combination with PCA analysis could be used in discrimination of protein samples at species level as a spectroscopic diagnostic tool. Our study provides fundamental references about computational strategies when EEM are used to explore proteins in ambient environment.
Collapse
Affiliation(s)
- Jiwei Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianjie Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Tengxiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Siqi Yu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shuai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chuan Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Pengjie Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
11
|
Geçgel C, Görmez Ö, Gözmen B, Turabik M, Kalderis D. A dual purpose aluminum-based metal organic framework for the removal of chloramphenicol from wastewater. CHEMOSPHERE 2022; 308:136411. [PMID: 36115473 DOI: 10.1016/j.chemosphere.2022.136411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics in the aquatic environment can cause significant environmental and human health problems even at trace concentrations. Conventional treatment systems alone are ineffective in removing these resistant antibiotics. To address this problem, oxidation and adsorption techniques were used to explore the removal of recalcitrant antibiotic chloramphenicol (CAP). An aluminum-based metal-organic framework (Al-MIL) with high surface area and extended porosity, was prepared and used both as adsorbent and catalyst for the oxidation of CAP. Characterization of the Al-MIL revealed a large surface area of 1137 m2 g-1, a homogeneous microporous structure, good crystallinity, and particle size in the range of 200-400 nm. Adsorption of CAP on Al-MIL achieved equilibrium after 1 h, reaching a maximum adsorption capacity of 96.1 mg g-1 at the optimum pH value of 5.3. The combination of adsorption and oxidation did not improve the % TOC reduction considerably, indicating an antagonistic rather than synergistic effect between the two processes. Oxidation alone in the presence of persulfate, achieved a % TOC reduction of 71% after 2 h, compared to 56% achieved by adsorption alone at the same duration. The optimum persulfate concentration was determined as 2.5 mM. The Al-MIL structure did not demonstrate any substantial deterioriation after six repeated runs, according to the reusability experiments.
Collapse
Affiliation(s)
- Cihan Geçgel
- Department of Nanotechnology & Advanced Materials, Mersin University, Mersin, Turkey; Advanced Technology Education Research and Application Center, Mersin University, 33343, Mersin, Turkey
| | - Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Belgin Gözmen
- Department of Nanotechnology & Advanced Materials, Mersin University, Mersin, Turkey; Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Meral Turabik
- Department of Nanotechnology & Advanced Materials, Mersin University, Mersin, Turkey; Chemical Program, Technical Science Vocational School, 33343, Mersin, Turkey
| | - Dimitrios Kalderis
- Department of Electronics Engineering, Hellenic Mediterranean University, 73100, Chania, Crete, Greece.
| |
Collapse
|
12
|
Duan N, Feng J, Deng B, Yang S, Tian H, Sun B. A colourimetric fluorescent probe for the sensitive detection of total iron in wine. Food Chem 2022; 383:132594. [PMID: 35255366 DOI: 10.1016/j.foodchem.2022.132594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/04/2022]
Abstract
As the iron content of wine affects the wine quality, a highly selective and simple detection method is needed to detect the iron content in wine. A colourimetric fluorescent probe (BTBAP probe) for the detection of total iron in wine was developed. The quantitative range of Fe2+/3+ content detected with the probe was 0 to 200 μM with a limit of detection (LOD) of 1.16 μM. After 10 min of Fe2+/3+ addition, the luminescence intensity of the BTBAP probe solution gradually decreased with increasing Fe2+/3+ concentration. Moreover, the B and G values of the luminescence photos were linearly related to the concentration of Fe2+/3+ (0-200 μM). BTBAP probe was successfully applied for rapid determination of the Fe2+/3+ concentration of wine. This work demonstrates that BTBAP probe is an excellent tool for rapid determination of the total iron content of wine using only a smartphone and no other professional equipment.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jingyi Feng
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Bing Deng
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
13
|
Zhang C, Lv X, Liu X, Chen H, He H. A reasonably constructed fluorescent chemosensor based on the dicyanoisophorone skeleton for the discriminative sensing of Fe 3+ and Hg 2+ as well as imaging in HeLa cells and zebrafish. RSC Adv 2022; 12:12355-12362. [PMID: 35480345 PMCID: PMC9037825 DOI: 10.1039/d2ra01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a new fluorescent sensor dicyanoisophorone Rhodanine-3-acetic acid (DCI-RDA) (DCI-RDA) has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+ with a large Stokes Shift (162 nm), high selectivity and sensitivity, and low LOD (1.468 μM for Fe3+ and 0.305 μM for Hg2+). In particular, DCI-RDA has a short response time (30 s). The Job's plot method in combination with 1H NMR titration and theoretical calculations was used to determine the stoichiometry of both DCI-RDA-Fe3+/Hg2+ complexes to be 1 : 1. Moreover, DCI-RDA is applied as a fluorescent probe for imaging in HeLa cells and zebrafish, indicating that it can be potentially applied for Fe3+/Hg2+ sensing in the field of biology. A new fluorescent sensor dicyanoisophorone rhodanine-3-acetic acid has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+.![]()
Collapse
Affiliation(s)
- Chuqi Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xinyan Lv
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xiuhong Liu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Hongyun Chen
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Haifeng He
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| |
Collapse
|
14
|
Haddad Irani-Nezhad M, Jalili R, Kohan E, Khataee A, Yoon Y. Tungsten disulfide (WS 2)/fluorescein ratiometric fluorescent probe for detection of cefixime residues in milk. ENVIRONMENTAL RESEARCH 2022; 205:112512. [PMID: 34896085 DOI: 10.1016/j.envres.2021.112512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
In this research work, it has been reported a ratiometric fluorescent sensor based on tungsten disulfide quantum dots (WS2 QDs) and fluorescein for the determination of Cefixime (CEF). When excited by radiation of 400 nm wavelength the probe illustrates dual emissions centered at 460 nm and 510 nm. CEF quenches the fluorescence (FL) intensity of fluorescein (510 nm), while it doesn't affect the FL emission of WS2 QDs at 460 nm. The change in the ratio of the two peaks (F460/F510) of the prepared sensor (WS2 QDs/fluorescein) is linearly proportional to the CEF concentration in the range of 200-2.500 ng/mL with a limit of detection (LOD) of 45 ng/mL. Hence, the proposed probe can be successfully used for CEF quantification in the milk samples.
Collapse
Affiliation(s)
- Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Elmira Kohan
- Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
15
|
Duan N, Guo F, Deng B, Yang S, Tian H, Sun B. Application of a luminous intensity variation fluorescent probe for the detection of ferric ions. LUMINESCENCE 2022; 37:803-809. [PMID: 35274440 DOI: 10.1002/bio.4224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/06/2022]
Abstract
A luminous intensity variation fluorescent probe (Probe 1) for the detection of ferric ion was developed. The quantitative range of Fe3+ content detected was 0 to 600 μM with the LOD at 0.76 μM. Further, after 20 minutes of Fe3+ addition, the intensity of luminescence of Probe 1 solution gradually decreased with increased Fe3+ concentration. In addition, the B and G values of these images showed a linear relationship with Fe3+ concentration (0-500 μM). Probe 1 was successfully used for the rapid determination of Fe3+ concentration in real samples. This study demonstrates that Probe 1 is an excellent tool for the rapid determination of Fe3+ content in real samples using a smart phone without professional equipment.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Feng Guo
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Bing Deng
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
16
|
Crosslinker polycarbazole supported magnetite MOF@CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Kristinaityte K, Urbańczyk M, Mames A, Pietrzak M, Ratajczyk T. Photoreactivity of an Exemplary Anthracene Mixture Revealed by NMR Studies, including a Kinetic Approach. Molecules 2021; 26:6695. [PMID: 34771104 PMCID: PMC8587725 DOI: 10.3390/molecules26216695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Anthracenes are an important class of acenes. They are being utilized more and more often in chemistry and materials sciences, due to their unique rigid molecular structure and photoreactivity. In particular, photodimerization can be harnessed for the fabrication of novel photoresponsive materials. Photodimerization between the same anthracenes have been investigated and utilized in various fields, while reactions between varying anthracenes have barely been investigated. Here, Nuclear Magnetic Resonance (NMR) spectroscopy is employed for the investigation of the photodimerization of two exemplary anthracenes: anthracene (A) and 9-bromoanthracene (B), in the solutions with only A or B, and in the mixture of A and B. Estimated k values, derived from the presented kinetic model, showed that the dimerization of A was 10 times faster in comparison with B when compounds were investigated in separate samples, and 2 times faster when compounds were prepared in the mixture. Notably, the photoreaction in the mixture, apart from AA and BB, additionally yielded a large amount of the AB mixdimer. Another important advantage of investigating a mixture with different anthracenes is the ability to estimate the relative reactivity for all the reactions under the same experimental conditions. This results in a better understanding of the photodimerization processes. Thus, the rational photofabrication of mix-anthracene-based materials can be facilitated, which is of crucial importance in the field of polymer and material sciences.
Collapse
Affiliation(s)
| | | | | | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| |
Collapse
|
18
|
Yao S, Zhao C, Shang M, Li J, Wang J. Enzyme-free and label-free detection of Staphylococcus aureus based on target-inhibited fluorescence signal recovery. Food Chem Toxicol 2021; 150:112071. [PMID: 33609594 DOI: 10.1016/j.fct.2021.112071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/30/2022]
Abstract
In this work, a one-step fluorometric strategy based on nanometal surface energy transfer (NSET) between carbon dots (CDs) and gold nanoparticles (AuNPs) was developed for facile detection of Staphylococcus aureus (S. aureus). The fluorescence of CDs was quenched up to 63.5% by AuNPs due to nucleic acid hybridization in the presence of linker DNA, which contained the complementary sequences of S. aureus-specific aptamer, and the fluorescence signal was in the "off" state. Upon aptamer addition, the CDs was released from linker DNA through the strong competitiveness of aptamer, leading to the notable fluorescence recovered. Once S. aureus is introduced, aptamer preferentially bind to the bacterial surface and cannot hybridize with complementary sequences in the linker DNA, resulting in the fluorescence signal with "off" state. Based on these findings, the performance and reliability of the fluorescence-based assay were evaluated. Compared to direct hybridization of complementary DNA on the surface of CDs and AuNPs, our sensing strategy has enhanced detection limit (10 cfu⋅mL-1) and improved linear range (10 to 106 cfu⋅mL-1) for S. aureus. Therefore, our proposed enzyme-free and label-free strategy may become a promising method for ease of operation, sensitive and selective S. aureus detection.
Collapse
Affiliation(s)
- Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Mingyu Shang
- College of Earth Sciences, Jilin University, Changchun, 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
19
|
Khose RV, Chakraborty G, Bondarde MP, Wadekar PH, Ray AK, Some S. Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(ii). NEW J CHEM 2021. [DOI: 10.1039/d0nj06259f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have prepared red-fluorescent graphene quantum dots and utilized as a highly selective and sensitive fluorescence turn-off probe for detection of the toxic metal ion Hg2+ from guava leaf extract.
Collapse
Affiliation(s)
- Rahul V. Khose
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Mahesh P. Bondarde
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Pravin H. Wadekar
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Alok K. Ray
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Professor
| | - Surajit Some
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|