1
|
Han X, Liu L, Gong H, Luo L, Han Y, Fan J, Xu C, Yue T, Wang J, Zhang W. Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food. Food Chem 2022; 371:131115. [PMID: 34555710 DOI: 10.1016/j.foodchem.2021.131115] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/14/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The total antioxidant capacity (TAC) has become increasingly vital for evaluating antioxidant food quality in the field of healthcare. Herein, a convenient and sensitive method for TAC assay was proposed based on the absorbance difference of reaction systems between various antioxidants existed in food and Dex-FeMnzyme/oxTMB. Under the optimum condition, the limit of detection (LOD) of the colorimetric sensor was 1.17 μM with the linear concentration range from 1 μM to 30 μM. The analysis results demonstrated the excellent feasibility of practical application in fruit and vegetable food, which offered a new avenue for the establishment of colorimetric biosensors.
Collapse
Affiliation(s)
- Ximei Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ling Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huiyu Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yaru Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiawen Fan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chenfei Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Cardoso AR, Frasco MF, Serrano V, Fortunato E, Sales MGF. Molecular Imprinting on Nanozymes for Sensing Applications. BIOSENSORS 2021; 11:152. [PMID: 34067985 PMCID: PMC8152260 DOI: 10.3390/bios11050152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
As part of the biomimetic enzyme field, nanomaterial-based artificial enzymes, or nanozymes, have been recognized as highly stable and low-cost alternatives to their natural counterparts. The discovery of enzyme-like activities in nanomaterials triggered a broad range of designs with various composition, size, and shape. An overview of the properties of nanozymes is given, including some examples of enzyme mimics for multiple biosensing approaches. The limitations of nanozymes regarding lack of selectivity and low catalytic efficiency may be surpassed by their easy surface modification, and it is possible to tune specific properties. From this perspective, molecularly imprinted polymers have been successfully combined with nanozymes as biomimetic receptors conferring selectivity and improving catalytic performance. Compelling works on constructing imprinted polymer layers on nanozymes to achieve enhanced catalytic efficiency and selective recognition, requisites for broad implementation in biosensing devices, are reviewed. Multimodal biomimetic enzyme-like biosensing platforms can offer additional advantages concerning responsiveness to different microenvironments and external stimuli. Ultimately, progress in biomimetic imprinted nanozymes may open new horizons in a wide range of biosensing applications.
Collapse
Affiliation(s)
- Ana R. Cardoso
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (A.R.C.); (M.F.F.); (V.S.)
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal;
| | - Manuela F. Frasco
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (A.R.C.); (M.F.F.); (V.S.)
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Verónica Serrano
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (A.R.C.); (M.F.F.); (V.S.)
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal;
| | - Maria Goreti Ferreira Sales
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (A.R.C.); (M.F.F.); (V.S.)
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|