1
|
Dvorak T, Hernandez-Sandoval H, Cheku S, Mora Valencia González M, Borer L, Grieser R, Carlson KA, Cao H. Development of a Rapid-Response Fluorescent Probe for H 2S: Mechanism Elucidation and Biological Applications. BIOSENSORS 2025; 15:174. [PMID: 40136971 PMCID: PMC11940642 DOI: 10.3390/bios15030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule involved in various physiological and pathological processes, making its accurate detection in biological systems highly desirable. In this study, two fluorescent probes (M1 and M2) based on 1,8-naphthalimide were developed for H2S detection via a nucleophilic aromatic substitution. M1 demonstrated high sensitivity and selectivity for H2S in aqueous media, with a detection limit of 0.64 µM and a strong linear fluorescence response in the range of 0-22 µM of NaHS. The reaction kinetics revealed a rapid response, with a reaction rate constant of 7.56 × 102 M-1 s-1, and M1 was most effective in the pH range of 6-10. Mechanism studies using 1H NMR titration confirmed the formation of 4-hydroxyphenyl-1,8-naphthalimide as the product of H2S-triggered nucleophilic substitution. M1 was applied in MDA-MB-231 cells for cell imaging, in which M1 provided significant fluorescence enhancement upon NaHS treatment, confirming its applicability for detecting H2S in biological environments. In comparison, M2, designed with extended conjugation for red-shifted emission, exhibited weaker sensitivity due to the reduced stability of its naphtholate product and lower solubility. These results demonstrate that M1 is a highly effective and selective fluorescent probe for detecting H2S, providing a valuable resource for investigating the biological roles of H2S in health and disease.
Collapse
Affiliation(s)
- Trevor Dvorak
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Haley Hernandez-Sandoval
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Sunayn Cheku
- Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA (K.A.C.)
| | - Marijose Mora Valencia González
- Facultad de Medicina Región Veracruz, Universidad Veracruzana, C. Agustín de Iturbide S/N, Zona Centro, Veracruz 91700, Mexico
| | - Linus Borer
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Riley Grieser
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| | - Kimberly A. Carlson
- Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA (K.A.C.)
| | - Haishi Cao
- Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA
| |
Collapse
|
2
|
Alam S, Tao X, Mao Y, Zheng S, Jiang C, Chen SY, Lu H. A pyrene-based fluorescent probe for H 2S detection and cellular imaging. Photochem Photobiol Sci 2025; 24:405-415. [PMID: 40025355 DOI: 10.1007/s43630-025-00695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Hydrogen sulfide (H2S) is a significant reactive sulfur species (RSS) involved in various human diseases, also playing an important role in many physiological and pathological processes. Thus, the development of an effective method for detecting H2S in mammalian cells is of great importance. In this study, we present the synthesis of a novel pyrene-based fluorescent probe, DPP, specifically designed for the selective detection of H2S. The DPP exhibits remarkable sensitivity, with a low detection limit of 0.63 µM, and demonstrates high selectivity for H2S in the presence of various interfering species. Additionally, the probe has demonstrated rapid detection of H2S in less than 6 min. The detection mechanism was thoroughly validated using 1H NMR, FT-IR, UV and fluorescence spectra. Moreover, the applicability of DPP was successfully demonstrated in both in vitro and in vivo settings using HeLa cells, confirming its potential as a powerful tool for monitoring H2S in biological systems. Additionally, the probe exhibited excellent performance in detecting H2S in water samples and in paper strip-based assays, further highlighting its versatility and practical utility for environmental monitoring and on-site applications.
Collapse
Affiliation(s)
- Said Alam
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xuanzuo Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China.
| | - Shu-Yang Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China.
| |
Collapse
|
3
|
Wei BY, Chi XH, Yue ZM, Miao JY, Zhao BX, Lin ZM. Two "turn on" fluorescence probes based on nitroso recognition group for detecting hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125021. [PMID: 39236571 DOI: 10.1016/j.saa.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide is a vital signaling molecule which holds a pivotal position in numerous biological functions. In this research, two novel "OFF-ON" fluorescence probes named YNO and TNO were designed based on the nitroso recognition group to detect H2S. Both YNO and TNO performed outstanding response rate and linear relationship between the fluorescence intensity and the concentration of H2S. YNO possessed larger Stokes shift and longer emission wavelength. TNO had lower limit of detection. In addition, YNO was successful applied to sense endogenous and exogenous H2S and target endoplasmic reticulum (ER) in Hela cells.
Collapse
Affiliation(s)
- Bing-Yu Wei
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Xiao-Hui Chi
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Zhen-Ming Yue
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jun-Ying Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
4
|
Su Y, Gao P, Zhang G, Zhou Y, Shi L, Wu J, Liang W, Shuang S, Zhang Y. Multifunctional Au-Ag NCs for luminescence and colorimetric double signal sensing of H 2S and catalytic reduction of nitrophenol. Talanta 2025; 282:127022. [PMID: 39406086 DOI: 10.1016/j.talanta.2024.127022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
In this study, the N-Acetyl-l-Cysteine (NAC)-capped gold and silver bimetallic nanoclusters (NAC@Au-Ag NCs) was synthesized by reflux method. Due to the silver effect, the NAC@Au-Ag NCs exhibited strong photoluminescence at far-red/near-infrared regions and better catalytic performance than Au or Ag NCs. Upon addition of H2S, the Au-Ag NCs exhibited obvious fluorescence quench and color changes through the generation of metal sulfides and a static quenching process. The Au-Ag NCs displayed a wide linear luminescence response for H2S (18.5-217 μmol/L) with a detection limit of 0.269 μmol/L. Moreover, the visible color of Au-Ag NCs changed from white to brown-yellow along with increased H2S, the corresponding RGB values also displayed good linearity with the concentration of H2S (90.1-678 μmol/L). Notably, the fabrication of test strips provided a convenient and intuitive tool to screen the freshness of eggs by the color change of test strips. Au-Ag NCs could be used for living HeLa cells bioimaging and recognition of H2S abnormalities. Furthermore, it can be used as a catalyst to reduction of nitrophenols (NPhs), specific included 2NP, 3NP and 4NP. The reaction was regarded as a pseudo-first-order kinetic reaction due to the presence of excess NaBH4. At 298K, the catalytic rate constants(k) of 2NP, 3NP and 4NP were 0.1754 min-1, 0.1734 min-1 and 0.2782 min-1, respectively. The NAC@Au-Ag NCs catalyst still showed good catalytic activity and reusability after five cycles. Therefore, this study developed a H2S sensor for food samples and biological systems. And this nanocatalyst had great application potential for removed the nitrophenol pollutants in water.
Collapse
Affiliation(s)
- Yan Su
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China
| | - Pengfei Gao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China
| | - Lihong Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR China, PR China
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, PR China; Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan, PR China; Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, PR China.
| |
Collapse
|
5
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
6
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
7
|
Magesh K, Vijay N, Wu SP, Velmathi S. Dual-Responsive Benzo-Hemicyanine-Based Fluorescent Probe for Detection of Cyanide and Hydrogen Sulfide: Real-Time Application in Identification of Food Spoilage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1190-1200. [PMID: 36602329 DOI: 10.1021/acs.jafc.2c05567] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colorimetric and fluorescent probes have received a lot of attention for detecting lethal analytes in realistic systems and in living things. Herein, a dual-approachable Benzo-hemicyaninebased red-emitting fluorescent probe PBiSMe, for distinct and instantaneous detection of CN- and HS- was synthesized. The PBiSMe emitted red fluorescence (570 nm) can switch to turn-off (570 nm) and blue fluorescence (465 nm) in response to CN- and HS-, respectively. Other nucleophilic reagents, such as reactive sulfur species (RSS) and anions, have no contact or interference with the probe; instead, a unique approach is undertaken to exclusively interact with CN- and HS- over a wide pH range. The measured detection limits for CN- (0.43 μM) and HS- (0.22 μM) ions are lower than the World Health Organization's (WHO) recommended levels in drinking water. We confirmed 1:1 stoichiometry ratio using Job's plot and observed good quantum yield for both analytes. The probe-coated paper strips were used to detect the H2S gas produced by food spoilage (such as eggs, raw meat, and fish) via an eye-catching visual response. Moreover, fluorescence bioimaging studies of living cells was done to confirm the probe's potential by monitoring the presence of CN- and HS- in a living system.
Collapse
Affiliation(s)
- Kuppan Magesh
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Shu Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, ROC
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
8
|
Vijay N, Magesh K, M RL, Velmathi S. Recent Advancements in the Design and Development of Near Infrared (NIR) Emitting Fluorescent Probes for Sensing and their Bio-Imaging Applications. Curr Org Synth 2023; 20:114-175. [PMID: 35260055 DOI: 10.2174/1570179419666220308145901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
Fluorescent bio-imaging will be the future in the medical diagnostic for visualising inner cellular and tissues. Near-infrared (NIR) emitting fluorescent probes serve dynamically for targeted fluorescent imaging of live cells and tissues. NIR imaging is advantageous because of its merits like deep tissue penetration, minimum damage to the tissue, reduced auto fluorescence from the background, and improved resolution in imaging. The Development of the NIR emitting probe was well explored recently and growing drastically. In this review, we summarise recent achievements in NIR probes in between 2018-2021. The merits and future applications have also been discussed in this review.
Collapse
Affiliation(s)
- Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| | - Kuppan Magesh
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| | - Renny Louis M
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, India
| |
Collapse
|
9
|
Shen Z, Gao Y, Li M, Zhang Y, Xu K, Gong S, Wang Z, Wang S. Development and application of a novel β-diketone difluoroboron-derivatized fluorescent probe for sensitively detecting H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121609. [PMID: 35839692 DOI: 10.1016/j.saa.2022.121609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide{Wang, 2018 #4}{Wang, 2018 #4}{Zhong, 2020 #9} (H2S) is a poisonous and harmful gas molecule. Certain concentrations of H2S{Liu, 2021 #8} can irritate the eyes, respiratory system, and central nervous system of human beings. Therefore, it was an urgent need for highly selective, anti-interference, and sensitive detection technology for hydrogen sulfide. Herein, a novel "turn-on" fluorescent probe 1-(2-(6,6-dimethylbicyclo[3.1.1]heptyl-2-ene-2-yl))-9-(4-(dimethylaminophenyl))non-1,6,8-triene-3,5-dione boron difluoride complex (MCBF) was designed and synthesized for detecting H2S sensitively. MCBF displayed a remarkable fluorescence enhancement response to H2S with a large Stokes shift of 220 nm. The sensitive detection of MCBF towards H2S owned good selectivity, fast response time (6 min), excellent photostability, and low detection limit (0.44 μM). The sensing mechanism of MCBF towards H2S was well confirmed by HRMS analysis, 1H NMR titration, and density functional theory (DFT) calculations. What's more, probe MCBF was successfully applied to detect the contained H2S in red wine, which showed the potential practicability of MCBF in real samples analysis.
Collapse
Affiliation(s)
- Zheyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Guo MY, Wang W, Ainiwaer D, Yang YS, Wang BZ, Yang J, Zhu HL. A fluorescent Rhodol-derived probe for rapid and selective detection of hydrogen sulfide and its application. Talanta 2022; 237:122960. [PMID: 34736685 DOI: 10.1016/j.talanta.2021.122960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
H2S has been reported to play essential roles in a variety of physiological and pathological procedures. In this work, a novel fluorescent probe, Rho-HS, for detecting H2S was developed by introducing the ortho-halogen to activate the least reactive recognition group 2,4-dinitrophenyl moiety. In combination of the structures from both Rhodamine B and fluorescein, Rho-HS could generate both the colorimetric and fluorescent responses. This feature was not frequently achieved and could lead to the quantitative and convenient for the end-user. In comparison with recent probes for H2S, the major advantages of Rho-HS included suiting wide pH range (6.0-10.0), relatively rapid response (within 15 min) and the high selectivity among the competing species including the biothiols. With low cytoxicity, Rho-HS was further applied in the biological imaging in living MCF-7 cells and Caenorhabditis elegans. We hope that the designing strategy in this work might provide useful information for more preferable implements in this field.
Collapse
Affiliation(s)
- Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dilimulati Ainiwaer
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Wang Y, Yu H, Chen Y, Cui M, Ji M. Synthesis and application of near-infrared dyes based on sulfur-substituted dicyanomethylene-4H-chromene and diarylethene. NEW J CHEM 2022. [DOI: 10.1039/d2nj02171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel compounds (S-DCM-1O, S-DCM-2O, S-DCM-3O, and S-DCM-4O) based on sulfur-substituted dicyanomethylene-4H-chromene (S-DCM) and diarylethene were synthesized. The detailed investigations on the fluorescence spectra, absorption spectra, time-dependent density functional theory...
Collapse
|
12
|
Lu X, Wu M, Wang S, Qin J, Li P. Synthesis and preliminary exploration of a NIR fluorescent probe for the evaluation of androgen dependence of prostate cancer. Talanta 2021; 239:123058. [PMID: 34823861 DOI: 10.1016/j.talanta.2021.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Castration resistance prostate cancer patients showing resistance to the androgen deprivation therapy always have low five-year survival rate and worse prognosis. A responsive NIR fluorescent probe was designed to report the androgen dependence and monitor the development of castration resistance for prostate cancer. METHODS Intratumoral H2S in prostate cancer was closely related to castration resistance. A H2S-responsive NIR probe (HM) was developed as a dependent indicator to report the androgen dependence of prostate cancer. The specificity of HM to H2S and the influence of normal intracellular substrates to the response between H2S and HM were determined. Cell/in vivo animal imaging were performed on PC-3 and LnCAP cell/tumor bearing mice, which presented with androgen independence and androgen dependence, respectively. RESULTS When HM responded to H2S, strong fluorescence at 770 nm could be rapidly turned on in 5 min with the stokes shift as large as 200 nm. The recognition between HM and H2S showed high specificity. Neither other common substrates showed capacity to turn on HM's fluorescence, nor their existence demonstrated competition. The fluorescence intensity was linearly dependent to the H2S concentration and the limited of detection was 0.15 μM. When HM was applied to PC-3/LNCaP prostate cancer cell and tumor, the intracellular and intratumoral H2S could be clearly imaged and monitored. CONCLUSION HM showing obvious fluorescent behaviors in androgen dependence and independence prostate tumor, which could work as an indicator to reported the androgen dependence of prostate cancer and monitor the development of castration resistance.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Muyu Wu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Siwen Wang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jingcan Qin
- School of Medicine, Shanghai Jiao Tong University, South Chongqing Road, Shanghai, 200025, China.
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
13
|
Bai H, Chen W, Yang J, Cao Y, Yu J, Zhao H, Zhou H, Jin X. Green synthesis of orange emissive carbon dots for the detection of Ag +and their application via solid-phase sensing and security ink. NANOTECHNOLOGY 2021; 33:035709. [PMID: 34638108 DOI: 10.1088/1361-6528/ac2f25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Fluorescent carbon dots (CDs) have attracted considerable interest due to their superior optical properties and facile preparation. In this work, O-phenylenediamine and melamine were used as precursors for the one-step hydrothermal synthesis of novel orange emissive CDs (O-CDs) in an aqueous solution. The fluorescence intensity (580 nm) of the O-CDs exhibited a good linear relationship with Ag+in the range of 0.0-50.0μM with the detection limit of 0.289μM. Moreover, the O-CDs were successfully used to determine Ag+in biological samples (Hela cells) because of their low cytotoxicity, and good biocompatibility. Besides, the O-CDs-doped solid-phase detection materials (test paper and hydrogel) were employed to monitor Ag+qualitatively and quantitatively, indicated that the O-CDs had a great capacity for the detection of Ag+in biological and environmental areas. Based on their extraordinary fluorescence property, the O-CDs could also be used as security ink. Overall, based on their excellent fluorescent performance, the CDs in this study have significant potential for practical application toward solid-phase sensing and security ink.
Collapse
Affiliation(s)
- Haiyan Bai
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Yixin Cao
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Jiajia Yu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Huaqi Zhao
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, People's Republic of China
| |
Collapse
|