1
|
Yang YQ, Gao Q, Yue SQ, Peng X, Wang N, Xin JL, Yu M, Rao JJ, Xue YL. Investigating the interaction mechanisms between arachin and resveratrol: Utilizing multi-spectroscopy and computational chemistry. Food Chem 2025; 463:141435. [PMID: 39378718 DOI: 10.1016/j.foodchem.2024.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arachin (ARA) and resveratrol (RES) are the primary protein and bioactive compound in peanuts and their processed products. However, the mechanism of interaction between these two substances remained unclear. To investigate protein structural changes, conformational variations, and molecular mechanisms in the interaction between them, multispectral analysis and computational chemistry methods were employed. Experimental results confirmed that RES quenched ARA's intrinsic fluorescence through static quenching, indicating their interaction. Thermodynamic analysis revealed the interaction between them was endothermic, spontaneous, and primarily hydrophobic. Molecular dynamics (MD) simulations highlighted strong affinity between RES and ARA, with key amino acids (His425, Val426, Phe405, and Phe464) facilitating their interaction. RES binding increased stability without significant protein conformational changes. The independent gradient model based on Hirshfeld partition (IGMH) validated their interaction, emphasizing van der Waals (VDW) interactions and hydrogen bonds (H-bonds) as crucial for stable binding. This research lays a theoretical foundation for potential applications of ARA-RES complex products in the food industry.
Collapse
Affiliation(s)
- Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Shi-Qi Yue
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jing-Li Xin
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Miao Yu
- Institute of Food and Processing, Liaoning, Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Asgharzadeh S, Shareghi B, Farhadian S. Probing the toxic effect of chlorpyrifos as an environmental pollutant on the structure and biological activity of lysozyme under physiological conditions. CHEMOSPHERE 2024; 355:141724. [PMID: 38499074 DOI: 10.1016/j.chemosphere.2024.141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
The pervasive use of pesticides like chlorpyrifos (CPY) has been associated with deleterious effects on biomolecules, posing significant risks to environmental integrity, public health, and overall ecosystem equilibrium. Accordingly, in this study, we investigated the potential binding interaction between the well-conserved enzyme, lysozyme (LSZ), and CPY through various spectroscopic techniques and molecular modeling. The UV-vis absorption and fluorescence experiments confirmed the complex formation and static quenching of the intrinsic fluorescence intensity. LSZ revealed a singular binding site for CPY, with binding constants around 105 M-1 across different temperature ranges. Analysis of thermodynamic parameters showed the spontaneous nature of the complexation process, while also revealing the pivotal role of hydrophobic interactions in stabilizing the LSZ-CPY system. According to circular dichroism and Fourier transform infrared studies, CPY binding changed the secondary structure of LSZ by boosting α-helix presence and reducing the levels of β-sheet and β-turn content. Further, CPY decreased the stability and activity of LSZ. Computational docking delineated the specific and highly preferred binding site of CPY within the structure of LSZ. Molecular dynamic simulation indicated the enduring stability of the LSZ/CPY complex and revealed structural modifications in the LSZ after binding with CPY. This research provides a detailed understanding of the intermolecular dynamics between CPY and LSZ, concurrently elucidating the molecular-level implications for the potential hazards of pesticides in the natural environment.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
3
|
Li J, Huang Y, Peng X, Luo W, Gantumur MA, Jiang Z, Hou J. Physical treatment synergized with natural surfactant for improving gas-water interfacial behavior and foam characteristics of α-lactalbumin. ULTRASONICS SONOCHEMISTRY 2023; 95:106369. [PMID: 36965313 PMCID: PMC10060377 DOI: 10.1016/j.ultsonch.2023.106369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate effect of physical treatment (ultrasound, U/high pressure homogenization, H/combined treatment, UH or HU) and surfactant (Mogroside V, Mog) on air/water interface adsorption and foaming properties of α-lactalbumin (ALa). Firstly, the binding of Mog and all physical-treated ALa was a static quenching process. Mog had the greatest binding affinity for HU-ALa among all treated samples. U or H treatment could change surface hydrophobicity of ALa/Mog complex. Secondly, at the molar ratio (ALa:Mog) of 1:50, foaming ability (FA) of all ALa samples got the maximum. The sequence of FA in ALa and ALa/Mog complex was listed as follow: HU > U > H > UH. Moreover, foaming stability (FS) of HU-ALa was the highest, followed by H-ALa, U-ALa and UH-ALa. Meanwhile, low concentration Mog increased FS of ALa or UH-ALa, but it reduced FS of H-ALa, U-ALa and HU-ALa. Quartz crystal microbalance with dissipation monitoring (QCM-D) experiment indicated that ALa/Mog complex after U or H treatment was quickly absorbed at air/water interface, compared with the treated ALa, and HU-ALa/Mog had the largest frequency shift. In addition, HU-ALa had the thickest bubble membrane and the highest dissipation shift in all samples, indicating that the absorbed membrane thickness and viscoelasticity of samples was correlated with foam stability. Therefore, U and H treatment synergism with Mog was an effective approach to enhance foam properties of ALa, which indicated that HU-treated ALa/Mog complex could be viewed as the safe and efficient foaming agent applied in food processing.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuxuan Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinhui Peng
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenwen Luo
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Jia W, Jin X, Liu W, Zhao B, Zhang M, Yang Y, Yin W, Zhang Y, Liu Y, Zhou S, Qin D, Xie D. Evaluation the binding of chlorogenic acid with bovine serum albumin: Spectroscopic methods, electrochemical and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122289. [PMID: 36628864 DOI: 10.1016/j.saa.2022.122289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/29/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Chlorogenic acid(CGA) is the common active phenolic acid in Chinese medicinal materials such as honeysuckle and eucommia. It is a class of small molecules with multiple activities such as antioxidant, inhibiting cancer cells, lowering blood sugar and lowering blood pressure. In this paper, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, molecular dynamics simulation and cyclic voltammetry (CV) electrochemical analysis were used to investigate the mechanism about interaction between CGA and BSA. Based on fluorescence quenching analysis, CGA quenched the inherent fluorescence of BSA remarkably through a static mechanism. The obtained value of binding constant (Kb = 5.75 × 105 L·mol-1) revealed a high binding affinity between CGA and BSA. The simulated molecular docking showed that hydrophobic force were also involved in the interaction between BSA and CGA. This paper also investigate the effect of temperature and metal ions on the binding of CGA and BSA. When the temperature increased, the binding of BSA and CGA was destroyed. Metal ions affect both the structure of BSA and the combination of BSA and CGA. By studying the mechanism of CGA interaction with BSA, we elucidated the storage and transport mechanism of CGA in vivo under simulated human environment and temperature conditions.
Collapse
Affiliation(s)
- Wenchao Jia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiangying Jin
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wang Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Manwen Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yanyan Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenhua Yin
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yukui Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yanyan Liu
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Hunan 410027, China
| | - Sangyang Zhou
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Hunan 410027, China
| | - Dilan Qin
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Hunan 410027, China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
5
|
Gu J, Liu H, Huang X, Ma Y, Zhang L. Investigation of the separate and simultaneous bindings of warfarin and fenofibrate to bovine serum albumin. Int J Biol Macromol 2023; 236:123978. [PMID: 36906198 DOI: 10.1016/j.ijbiomac.2023.123978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Lipid-lowering drugs are often taken with anticoagulant drugs in hyperlipidemia patients. Fenofibrate (FNBT) and warfarin (WAR) are common clinical lipid-lowering drugs and anticoagulant drugs, respectively. A study of binding affinity, binding force, binding distance, and binding sites was performed to determine the interaction mechanism between drugs and carrier proteins (bovine serum albumin, BSA), as well as their effects on BSA conformation. Both FNBT and WAR can form complexes with BSA by van der Waals force and hydrogen bonds. WAR had a stronger fluorescence quenching effect on BSA, a stronger binding affinity, and greater effects on BSA conformation than FNBT. According to fluorescence spectroscopy and cyclic voltammetry, co-administration of drugs decreased one drug's binding constant to BSA and increased its binding distance. This suggested that each drug's binding to BSA was disturbed by each other, as well as each drug's binding ability to BSA was altered by the other. It was demonstrated that co-administration of drugs had greater effects on the secondary structure of BSA and microenvironment polarity surrounding amino acid residues, using multiple spectroscopy techniques, such as ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and synchronous fluorescence spectroscopy.
Collapse
Affiliation(s)
- Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Xiyao Huang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Liang Zhang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| |
Collapse
|
6
|
Liang W, Zhang Z, Zhu Q, Han Z, Huang C, Liang X, Yang M. Molecular interactions between bovine serum albumin (BSA) and trihalophenol: Insights from spectroscopic, calorimetric and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122054. [PMID: 36334416 DOI: 10.1016/j.saa.2022.122054] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The issue of disinfection byproducts (DBPs) in the water has received critical attention due to the health effects on humans. In the water environment, interactions between bovine serum albumins (BSA), the most abundant water-soluble protein, and DBPs unavoidably occur. In this study, comparative binding interactions of two aromatic DBPs - 2,4,6-trichlorophenol (TCP) and 2,4,6-tribromophenol (TBP) with BSA were investigated systematically utilizing fluorescence spectrometry, UV absorption spectrometry, isothermal titration calorimetry and molecular docking approach. The fluorescence quenching results indicated that TCP/TBP could quench the endogenous fluorescence of BSA through static quenching mechanisms, and TBP showed a more substantial quenching effect. The binding constants were determined for TCP-BSA (3.638 × 105 L/mol, 303 K) and TBP-BSA (6.394 × 105 L/mol, 303 K) complexes, with TBP showing higher binding affinity than TCP. The thermodynamic study and docking analysis suggested that hydrogen bonding and van der Waals forces were the primary interaction forces. Both of TCP and TBP were located in the subdomain IIIA of BSA, and TBP could form more stable complex than TCP. The results of the present study contributed valuable information on the environmental behaviors of halophenols in water environment from perspectives of binding with BSA.
Collapse
Affiliation(s)
- Wenjie Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhenxuan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qingyao Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zekun Han
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Cui Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiong Liang
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
7
|
Vinod SM, Murugan Sreedevi S, Krishnan A, Ravichandran K, Karthikeyan P, Kotteswaran B, Rajendran K. Complexity of the Role of Various Site-Specific and Selective Sudlow Binding Site Drugs in the Energetics and Stability of the Acridinedione Dye-Bovine Serum Albumin Complex: A Molecular Docking Approach. ACS OMEGA 2023; 8:5634-5654. [PMID: 36816669 PMCID: PMC9933201 DOI: 10.1021/acsomega.2c07111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Molecular docking (Mol.Doc) techniques were employed to ascertain the binding affinity of two resorcinol-based acridinedione dyes (ADR1 and ADR2) with the widely studied globular protein Bovine Serum Albumin (BSA) in the presence of site-selective binding drugs by Autodock Vina 4.2 software. Docking of various feasible conformers of ADR1 dye with BSA was found to be energetically more favored than ADR2 dye, even though both these dyes differ in the 9th position of the basic dye structure. Analysis of dyes with BSA establishes the location of dye in all of the binding sites of BSA, predominantly through conventional and nonconventional hydrogen-bonding (HB) interactions. The coexistence of hydrophobic interactions resulted in the stability of various conformers generated. The introduction of site I and site II (Sudlow site binding drugs) into ADR1-BSA and ADR2-BSA complexes effectively destabilizes the dye-protein complex; however, the drugs do not displace ADR dyes completely from their selective binding domains. Site II binding drugs effectively destabilize the binding ability of the dye-protein complex rather than site I drugs. However, docking of site I drug 3-carboxyl-4-methyl-5-propyl-2-furanpropanic acid (CMPF) largely destabilizes the ADR1-protein complex, whereas indomethacin (INDO) enhances the binding affinity of the ADR2-protein complex. Interestingly, simultaneous docking of ADR dyes to the BSA-drug complex results in larger stability of the protein-drug complex through HB interactions rather than hydrophobic interactions. Both ADR1 and ADR2 dyes predominantly occupy the Sudlow binding sites of BSA, and the introduction of either site I or site II binding drugs does not displace the dye efficiently from the corresponding binding sites, rather the drugs are effectively displaced toward other binding domains apart from their specific site-binding domains of BSA. Through Mol.Doc techniques, we authenticate that the interactions in host-guest complex systems involving competing ligands are established in depth, wherein the dye as well as the amino acid (AA) moieties in BSA act as both HB donor and acceptor sites apart from several hydrophobic interactions coexisting toward the stability.
Collapse
Affiliation(s)
- Seba Merin Vinod
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Sangeetha Murugan Sreedevi
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Anju Krishnan
- Department
of Chemistry, Sathyabama Institute of Science
and Technology, Kamaraj
Nagar, Semmancheri, Chennai 600119, Tamil Nadu, India
| | - Keerthiga Ravichandran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Pradeep Karthikeyan
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Bharath Kotteswaran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Kumaran Rajendran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| |
Collapse
|
8
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Modulation of the binding ability to biomacromolecule, cytotoxicity and cellular imaging property for ionic liquid mediated carbon dots. Colloids Surf B Biointerfaces 2022; 216:112552. [PMID: 35580459 DOI: 10.1016/j.colsurfb.2022.112552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
For the preparation of carbon dots (CDs), a variety of carbon sources and synthetic protocols are available which endow CDs with variable and unpredictable properties. In the present study, three CDs were developed with ionic liquid 1-butyl-3-methylimidazolium dicyanamide as the precursor through ethanol-thermal and hydrothermal strategies, termed as E-CDs and H-CDs, respectively. The features of these carbon dots, i.e., their physicochemical and optical properties, their interactions with bovine serum albumin (BSA) as well as their imaging capability were investigated with respect to the CDs prepared with microwave assisted approach (W-CDs). E-CDs and H-CDs were demonstrated to exhibit similar framework structures and optical properties, and they exhibited larger particle-sizes than that of W-CDs. In addition, the increase of ethanol-thermal and hydrothermal reaction time strengthened the quantum yields of the CDs and promoted their binding capability with BSA. E-CDs and H-CDs showed similar cytotoxicity on normal (LX-2) and cancer (SK-Hep-1) cells. We further found that these CDs may readily enter the cells within 5 min, while the fluorescence of hydrophilic E-CDs and H-CDs was very weak with respect to that of hydrophobic W-CDs in cell imaging. On the other hand, all the CDs exhibited little impact on the level of intracellular reactive oxygen species. The present study is conducive to guide the preparation of suitable carbon dots for different application scenarios.
Collapse
|