1
|
Xia S, Song J, Ma C, Hao T, Hou Y, Li Z, Xue Y, Xue C, Jiang X. Binding and distribution regularity of water molecules in high-moisture textured Antarctic krill (Euphausia superba) meat. Food Chem 2025; 462:141028. [PMID: 39217743 DOI: 10.1016/j.foodchem.2024.141028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
High-moisture extrusion technique with the advantage of high efficiency and low energy consumption is a promising strategy for processing Antarctic krill meat. Consequently, this study aimed to prepare high-moisture textured Antarctic krill meat (HMTAKM) with a rich fiber structure at different water contents (53 %, 57 %, and 61 %) and to reveal the binding and distribution regularity of water molecules, which is closely related to the fiber structure of HMTAKM and has been less studied. The hydrogen-bond network results indicated the presence of at least two or more types of water molecules with different hydrogen bonds. Increasing the water content of HMTAKM promoted the formation of hydrogen bonds between the water molecules and protein molecules, leading to the transition of the β-sheet to the α-helix. These findings offer a novel viable processing technique for Antarctic krill and a new understanding of the fiber formation of high-moisture textured proteins.
Collapse
Affiliation(s)
- Songgang Xia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Jian Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Chengxin Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Tingting Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yukun Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Zhaojie Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Yong Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Laboratory of Marine Drugs and Biological Products, The Laoshan Laboratory, 266235, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266041, PR China.
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266041, PR China.
| |
Collapse
|
2
|
Ma B, Chen N, Cai W, Shao X. Understanding the protein conformation transition within polymer hydrogels using a near-infrared water spectroscopy probe. Int J Biol Macromol 2024; 290:138995. [PMID: 39706456 DOI: 10.1016/j.ijbiomac.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
For understanding the behavior of the active substance in vivo, the near-infrared (NIR) spectral variations of ovalbumin (OVA) loaded in poly(N, N-dimethyl acrylamide) (PDMAA) hydrogel with temperature were investigated. Analyzing the spectra with improved resolution by continuous wavelet transform (CWT), the absorption variation of the peak at 4851 cm-1 arising from the α-helix of OVA with temperature was studied. The results show that a sharp decrease occurs at a lower temperature in PDMAA hydrogel, indicating that the unfolding of OVA in PDMAA hydrogel is facilitated. On the other hand, the intensity changes for the hydrogen-bonded water were consistent with that for the protein, providing evidence for facilitating the unfolding. Furthermore, the spectral feature of a new water structure with two hydrogen bonds was obtained from the spectra of OVA loaded hydrogel by independent component analysis (ICA). By analyzing the difference of the water structure with temperature and the side chain of hydrogels, it is demonstrated that the water structure may be a double hydration water surrounding both the protein and the methyl groups of the hydrogel. The easy dissociation of the double hydration water may be a crucial factor in facilitating the unfolding of proteins within hydrogels.
Collapse
Affiliation(s)
- Biao Ma
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nannan Chen
- Beijing Inno Medicine Co., LTD., Beijing 100124, PR China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China.
| |
Collapse
|
3
|
de Azevedo Santos L, van der Voort S, Burema SR, Fonseca Guerra C, Bickelhaupt FM. Blueshift in Trifurcated Hydrogen Bonds: A Tradeoff between Tetrel Bonding and Steric Repulsion. Chemphyschem 2024; 25:e202300480. [PMID: 37864778 DOI: 10.1002/cphc.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
We have quantum chemically investigated the origin of the atypical blueshift of the H-C bond stretching frequency in the hydrogen-bonded complex X- •••H3 C-Y (X, Y=F, Cl, Br, I), as compared to the corresponding redshift occurring in Cl- •••H3 N and Cl- •••H3 C-H, using relativistic density functional theory (DFT) at ZORA-BLYP-D3(BJ)/QZ4P. Previously, this blueshift was attributed, among others, to the contraction of the H-C bonds as the H3 C moiety becomes less pyramidal. Herein, we provide quantitative evidence that, instead, the blueshift arises from a direct and strong X- •••C interaction of the HOMO of A- with the backside lobe on carbon of the low-lying C-Y antibonding σ* LUMO of the H3 C-Y fragment. This X- •••C bond, in essence a tetrel bond, pushes the H atoms towards a shorter H-C distance and makes the H3 C moiety more planar. The blueshift may, therefore, serve as a diagnostic for tetrel bonding.
Collapse
Affiliation(s)
- Lucas de Azevedo Santos
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Storm van der Voort
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Shiri R Burema
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
4
|
Han L, Sun Y, Wang Y, Fu H, Duan C, Wang M, Cai W, Shao X. Ultra-high resolution near-infrared spectrum by wavelet packet transform revealing the hydrogen bond interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122233. [PMID: 36525810 DOI: 10.1016/j.saa.2022.122233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Resolution is always an obstacle to analyzing the fine structure of a spectrum. The problem is particularly serious in the analysis of the near-infrared (NIR) spectra of aqueous solutions, because the spectrum is generally composed of overlapping broad peaks making the understanding of the structures and the interactions notoriously difficult. In this work, wavelet packet transform (WPT) was adopted to enhance the resolution of the NIR spectra of aqueous mixtures. Due to the microscopic ability of WPT in both position and frequency, the fine details of a spectrum can be observed in the spectral components of different frequencies obtained by WPT decomposition. Ultra-high resolution spectrum can be obtained from the high-frequency component representing the spectral features. Spectral features of different hydrogen-bonded OH, as well as the OH in HOH and HOD, were identified from the high-resolution NIR spectra of water and heavy water mixtures and validated by the variation of the spectral intensity with the mole ratio of H2O and D2O. The high-resolution spectrum was further applied in analyzing the interaction of amine and water. The spectral features of the hydrogen bonding between CH/NH in tert-butylamine (TBA) and OH in water were observed. The structures of CH bonded to one water molecule, and the structures of NH connecting with one and two water molecules were identified.
Collapse
Affiliation(s)
- Li Han
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yan Sun
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yan Wang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Chaoshu Duan
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Mian Wang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
5
|
Zhang L, Dai H, Zhang J, Zheng Z, Song B, Chen J, Lin G, Chen L, Sun W, Huang Y. A Study on Origin Traceability of White Tea (White Peony) Based on Near-Infrared Spectroscopy and Machine Learning Algorithms. Foods 2023; 12:foods12030499. [PMID: 36766027 PMCID: PMC9914092 DOI: 10.3390/foods12030499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Identifying the geographical origins of white tea is of significance because the quality and price of white tea from different production areas vary largely from different growing environment and climatic conditions. In this study, we used near-infrared spectroscopy (NIRS) with white tea (n = 579) to produce models to discriminate these origins under different conditions. Continuous wavelet transform (CWT), min-max normalization (Minmax), multiplicative scattering correction (MSC) and standard normal variables (SNV) were used to preprocess the original spectra (OS). The approaches of principal component analysis (PCA), linear discriminant analysis (LDA) and successive projection algorithm (SPA) were used for features extraction. Subsequently, identification models of white tea from different provinces of China (DPC), different districts of Fujian Province (DDFP) and authenticity of Fuding white tea (AFWT) were established by K-nearest neighbors (KNN), random forest (RF) and support vector machine (SVM) algorithms. Among the established models, DPC-CWT-LDA-KNN, DDFP-OS-LDA-KNN and AFWT-OS-LDA-KNN have the best performances, with recognition accuracies of 88.97%, 93.88% and 97.96%, respectively; the area under curve (AUC) values were 0.85, 0.93 and 0.98, respectively. The research revealed that NIRS with machine learning algorithms can be an effective tool for the geographical origin traceability of white tea.
Collapse
Affiliation(s)
- Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialin Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bo Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaya Chen
- LiuMiao White Tea Corporation, Fuding 355200, China
| | - Gang Lin
- Fujian Rongyuntong Ecological Technology Limited Company, Fuzhou 350025, China
| | - Linhai Chen
- Fu’an Tea Industry Development Center, Fu’an 355000, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of China White Tea, Fuding 355200, China
- Correspondence: (W.S.); (Y.H.)
| | - Yan Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of China White Tea, Fuding 355200, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (W.S.); (Y.H.)
| |
Collapse
|
6
|
Wang M, Cai W, Shao X. Resolving Near-Infrared Spectra by Generalized Window Factor Analysis for Understanding Interactions in Aqueous Solution. ANAL LETT 2023. [DOI: 10.1080/00032719.2022.2162914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mian Wang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition; State Key Laboratory of Medicinal Chemical Biology, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition; State Key Laboratory of Medicinal Chemical Biology, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition; State Key Laboratory of Medicinal Chemical Biology, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| |
Collapse
|
7
|
Muncan J, Tamura S, Nakamura Y, Takigawa M, Tsunokake H, Tsenkova R. Aquaphotomic Study of Effects of Different Mixing Waters on the Properties of Cement Mortar. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227885. [PMID: 36431986 PMCID: PMC9699450 DOI: 10.3390/molecules27227885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
The mixing water used for cement concrete has a significant effect on the physical properties of the material after hardening; however, other than the upper limit for the mixed impurities, not enough consideration has been given to the functions and characteristics of water at the molecular level. In this study, we investigated the effect of four different types of water (two spring-, mineral waters, tap water and distilled water) on the drying shrinkage of the hardened cement by comparing the material properties of the concrete specimens and analyzing the molecular structure of the water and cement mortar using aquaphotomics. The near infrared (NIR) spectra of waters used for mixing were acquired in the transmittance mode using a high-precision, high-accuracy benchtop spectrometer in the range of 400-2500 nm, with the 0.5 nm step. The NIR spectra of cement paste and mortar were measured in 6.2 nm increments in the wavelength range of 950 nm to 1650 nm using a portable spectrometer. The measurements of cement paste and mortar were performed on Day 0 (immediately after mixing, cement paste), 1 day, 3 days, 7 days, and 28 days after mixing (cement mortar). The spectral data were analyzed according to the aquaphotomics' multivariate analysis protocol, which involved exploration of raw and preprocessed spectra, exploratory analysis, discriminating analysis and aquagrams. The results of the aquaphotomics' analysis were interpreted together with the results of thermal and drying shrinkage measurements. Together, the findings clearly demonstrated that the thermal and drying shrinkage properties of the hardened cement material differed depending on the water used. Better mechanical properties were found to be a result of using mineral waters for cement mixing despite minute differences in the chemical content. In addition, the aquaphotomic characterization of the molecular structure of waters and cement mortar during the initial hydration reaction demonstrated the possibility to predict the characteristics of hardened cement at a very early stage. This provided the rationale to propose a novel evaluation method based on aquaphotomics for non-invasive evaluation and monitoring of cement mortar.
Collapse
Affiliation(s)
- Jelena Muncan
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Satoshi Tamura
- Technical Department, ISOL Technica Corporation, Kyoto 606-0022, Japan
- Correspondence: (S.T.); (R.T.)
| | - Yuri Nakamura
- Technical Department, ISOL Technica Corporation, Kyoto 606-0022, Japan
| | - Mizuki Takigawa
- Institute of Engineering, Graduate School of Engineering, Division of Urban Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hisao Tsunokake
- Institute of Engineering, Graduate School of Engineering, Division of Urban Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
- Correspondence: (S.T.); (R.T.)
| |
Collapse
|
8
|
Sun Y, Cai W, Shao X. Chemometrics: An Excavator in Temperature-Dependent Near-Infrared Spectroscopy. Molecules 2022; 27:452. [PMID: 35056768 PMCID: PMC8777604 DOI: 10.3390/molecules27020452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
Temperature-dependent near-infrared (NIR) spectroscopy has been developed and taken as a powerful technique for analyzing the structure of water and the interactions in aqueous systems. Due to the overlapping of the peaks in NIR spectra, it is difficult to obtain the spectral features showing the structures and interactions. Chemometrics, therefore, is adopted to improve the spectral resolution and extract spectral information from the temperature-dependent NIR spectra for structural and quantitative analysis. In this review, works on chemometric studies for analyzing temperature-dependent NIR spectra were summarized. The temperature-induced spectral features of water structures can be extracted from the spectra with the help of chemometrics. Using the spectral variation of water with the temperature, the structural changes of small molecules, proteins, thermo-responsive polymers, and their interactions with water in aqueous solutions can be demonstrated. Furthermore, quantitative models between the spectra and the temperature or concentration can be established using the spectral variations of water and applied to determine the compositions in aqueous mixtures.
Collapse
Affiliation(s)
| | | | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China; (Y.S.); (W.C.)
| |
Collapse
|