1
|
Mohamed N, Hamed M, Mansour FR, Zarad W, Emara S, Shawky A. Luminescent Carbon Dots From Biomass Waste for the Sensitive Determination of Ascorbic Acid in Tablet Dosage Forms. LUMINESCENCE 2025; 40:e70072. [PMID: 39748266 DOI: 10.1002/bio.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/12/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method. A variety of techniques, including transmission electron microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier-transform infrared spectroscopy, were employed to characterize the PSP-based NACQDs. The NACQDs were used as probes for FL analysis of ASA, where the addition of ASA caused fluorescence quenching of the NACQDs. The developed method demonstrated good linearity (r = 0.996), sensitivity, accuracy (percentage recovery ranging from 99.36% to 100.35%), and precision (%RSD less than 0.21%) in the quantification of ASA in the range of 0.3-15 μg/mL. The method's LOD and LOQ values were 0.1 and 0.3 μg/mL, respectively. The successful analysis of ASA in tablet formulations demonstrated the practicality of the proposed method. Greenness assessment tools highlighted its superior eco-friendliness compared to reference techniques.
Collapse
Affiliation(s)
- Nehal Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa Zarad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samy Emara
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Ahmed Shawky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
2
|
Magar HS, Fahim AM, Hashem MS. Accurate, affordable, and easy electrochemical detection of ascorbic acid in fresh fruit juices and pharmaceutical samples using an electroactive gelatin sulfonamide. RSC Adv 2024; 14:39820-39832. [PMID: 39697253 PMCID: PMC11651383 DOI: 10.1039/d4ra06271j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
In this study, we demonstrated how to design and construct a highly specific and sensitive sensor capable of rapidly and accurately detecting ascorbic acid (AA). A sulfonamide derivative (S) acting as a novel monomer was synthesized through an aldol condensation reaction. Subsequently, a free radical-mediated grafting polymerization approach was used to create a new generation of gelatin (Gel) grafted with poly sulfonamide derivative (Gel-g-PS). The graft percentage (GP%) was 60 ± 0.5% with a conversion rate of 98.3%. Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were utilized to confirm the formation of Gel-g-PS. The developed gelatin sulfonamide modified screen printed electrode (Gel-g-PS/SPE) was employed for the determination of ascorbic acid (AA) in fruit juices and pharmaceutical samples. Gel-g-PS/SPE showed excellent electrochemical catalytic activities toward AA oxidation compared to bare (unmodified) SPE. Ascorbic acid displayed a sensitive oxidation peak at 0.35 V using the differential pulse voltammetry technique. Under optimized experimental conditions, the two linear ranges for AA detection were obtained to be from 0.2-5 ppb and 20-600 ppb, with a limit of detection (LoD) of 0.03 ppb and a limit of quantification (LoQ) of 0.11 ppb. The proposed Gel-g-PS modified SPE surface demonstrated good selectivity, stability, reproducibility, and repeatability as well as a good recovery rate in fresh fruit juices and pharmaceutical samples.
Collapse
Affiliation(s)
- Hend S Magar
- Applied Organic Chemistry Department, National Research Centre Dokki, P. O. Box. 12622 Giza Egypt
| | - Asmaa M Fahim
- Department of Green Chemistry, National Research Centre Dokki, P. O. Box. 12622 Giza Egypt
| | - M S Hashem
- Polymers and Pigments Department, National Research Centre Dokki, P. O. Box. 12622 Giza Egypt
| |
Collapse
|
3
|
Gutiérrez A, Ramírez-Ledesma MG, Rivas GA, Luna-Bárcenas G, Escalona-Villalpando RA, Ledesma-García J. Development of an electrochemical sensor for the quantification of ascorbic acid and acetaminophen in pharmaceutical samples. J Pharm Biomed Anal 2024; 249:116334. [PMID: 38976964 DOI: 10.1016/j.jpba.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
This work presents the modification of glassy carbon electrodes (GCE) by using a dispersion resulting from the non-covalent functionalization of multi-walled carbon nanotubes (MWCNT) with polyarginine (polyArg). MWCNT-polyArg is used for the quantification of ascorbic acid (AA) in the presence of acetaminophen (APAP) and viceversa. Since ascorbic acid and acetaminophen are strongly absorbed on GCE/MWCNT-polyArg, they can be detected in the presence of 4.0×10-5 M acetaminophen (and 3.0×10-5 M ascorbic acid) by using adsorptive stripping with media exchange and differential pulse voltammetry. Using water as the solvent for the MWCNT dispersion, the result was Z-potential of 0.053 ± 0.006 V. The developed sensor showed excellent specificity, sensitivity, stability and reproducibility compared to previously published sensors. The GCE/MWCNT-polyArg sensor shows a fast response time of ∼5 minutes, low limits of detection and quantification for AA (0.95 and 2.9 μM respectively) and APAP (0.27 and 0.82μM, respectively), high sensitivity of 0.0616 μA/M for AA or APAP 0.240μA/M. It was used to test its practicability by determining the concentration of AA or APAP (AA and APAP) in pharmaceutical samples. Finally, the simultaneous measurement of ascorbic acid and acetaminophen in pharmaceuticals showed a good correlation, with a maximum error and RSD of 4.5 and 5.1 %, respectively.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; CONAHCYT, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico.
| | - María Guadalupe Ramírez-Ledesma
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Gustavo A Rivas
- INFIQC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Gabriel Luna-Bárcenas
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Santiago de Querétaro 76130, Mexico
| | - Ricardo A Escalona-Villalpando
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Janet Ledesma-García
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico.
| |
Collapse
|
4
|
Vinoth S, Wang SF. Construction of functionalized carbon nanotube@metal oxide nanocomposite for high-performance electrochemical measurement of antipyretic drug in water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46484-46497. [PMID: 36869953 DOI: 10.1007/s11356-023-26043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Acetaminophen (AP) acts as supportive clinical therapy for fever and dysmenorrhea. An overdose of AP may result in severe adverse diseases, such as liver dysfunction. In addition, AP is a key-listed environmental pollutant, which is difficult to degrade in the environment and has serious effects on living bodies. Therefore, the simple and quantitative determination of AP is highly relevant today. In this work, tin dioxide (SnO2) nanoparticles with functionalized multi-walled carbon nanotube (f-MWCNT) as a hybrid composite were prepared by hydrothermal-assisted synthesis. The composite material was characterized by various spectral, morphological, and electrochemical tests. Electrochemical investigations were conducted using a SnO2@f-MWCNT-reinforced electrode for the detection of AP. The composite electrode exhibited better functional properties, which facilitated electron transfer and enhanced electrical conductivity. The calculated low detection limit (LOD) of 0.36 nM is with a wide linear range of concentration from 0.001 to 673 µM. Additionally, the SnO2@f-MWCNT-modified electrode exhibited good anti-interference capability, repeatability, reproducibility, storage, and operational stability. The developed SnO2@f-MWCNT-modified electrode was applied to practical analysis in diverse water matrices (river, drinking, and pond) with acceptable recovery percentages. A synthesized nanoscale metal oxide electrocatalyst is of great interest and an active research area that serves as a foundation for the development of new, cost-effective electrochemical antibiotic drug sensors.
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd, Taipei, 106, Taiwan.
| |
Collapse
|
5
|
Shen Q, Zhang Q, Yang Y, Yu X, Zang L, Zhang W, Shen D. Wavelength-dependent photoelectrochemical response demonstrated by the determination of acetaminophen and rutin in differential molecularly imprinted polymers strategy. Talanta 2024; 270:125640. [PMID: 38211357 DOI: 10.1016/j.talanta.2024.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Herein, the excitation wavelength-dependent responses of the molecularly imprinted polymer (MIP) photoelectrochemical (PEC) sensors were investigated, using acetaminophen (AP), rutin (RT) and perfluorooctanoate (PFOA) as the model templates, pyrrole as functional monomer, CuInS2@ZnS/TiO2 NTs as the basic photoelectrode. With wavelength λ > 240 nm, the photocurrent of MIPPFOA enhanced at higher concentrations of PFOA. With increasing AP concentration, the photocurrents of MIPAP could decline with λ < 271 nm, not change at λ = 270 nm, or increase with λ > 270 nm. As RT concentration increased, the photocurrents of MIPRT could decrease (λ < 431 nm), not change (λ = 431 nm) or increase (λ > 431 nm). The PEC responses depend on the comprehensive interaction of two contrary mechanisms from the template molecules within the MIP membrane. The photocurrent is enhanced by the role of the electron donor for photo-generated holes but attenuated due to the steric hindrance effect and the excitation light intensity loss via absorption or scattering. The apparent molar absorption coefficient of AP and RT within MIP membranes are 9.1-19.4 folds of those measured from dilute solutions. By using a routine UV lamp as the light source, the photocurrents of MIPRT at 254 nm and MIPAP at 365 nm were used to determine RT and AP, with the detection limits of 5.3 and 16 nM, respectively. The interference from the non-specific adsorption of interferents on the surfaces of MIPAP and MIPRT was reduced by one order of magnitude via a differential strategy.
Collapse
Affiliation(s)
- Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Qiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Yan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
6
|
Mouhamed AA, Nadim AH, Mostafa NM, Eltanany BM. Application of smart chemometric models for spectra resolution and determination of challenging multi-action quaternary mixture: statistical comparison with greenness assessment. BMC Chem 2024; 18:44. [PMID: 38431694 PMCID: PMC10909257 DOI: 10.1186/s13065-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
A multivariate spectrophotometric method is a potential approach that enables discrimination of spectra of components in complex matrices (e.g., pharmaceutical formulation) serving as a substitution method for chromatography. Four green smart multivariate spectrophotometric models were proposed and validated, including principal component regression (PCR), partial least-squares (PLS), multivariate curve resolution-alternating least squares (MCR-ALS), and artificial neural networks (ANN). The developed chemometric models were compared to resolve highly overlapping spectra of Paracetamol (PARA), Chlorpheniramine maleate (CPM), Caffeine (CAF), and Ascorbic acid (ASC). The four multivariate calibration models were assessed via recoveries percent, and root mean square error of prediction. Hence, the proposed models were efficiently applied with no need for any preliminary separation step. The models were utilized to analyze the studied components in their combined pharmaceutical formulation (Grippostad® C capsules). Analytical GREEnness Metric Approach (AGREE) and eco-scale tools were applied to assess the greenness of the established models and found to be 0.77 and 85, respectively. Moreover, the proposed models have been compared to official ones showing no considerable variations in accuracy and precision. Therefore, these models can be highly advantageous for conducting standard pharmaceutical analysis of the substances researched within product testing laboratories.
Collapse
Affiliation(s)
- Aya A Mouhamed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed H Nadim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nadia M Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
7
|
A flexible and self-supported nanoporous gold wire electrode with a seamless structure for electrochemical ascorbic acid sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Jakóbczyk P, Dettlaff A, Skowierzak G, Ossowski T, Ryl J, Bogdanowicz R. Enhanced stability of electrochemical performance of few-layer black phosphorus electrodes by noncovalent adsorption of 1,4-diamine-9,10-anthraquinone. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Mohamed MA. Stability-Indicating New RP-UPLC Method for Simultaneous Determination of a Quaternary Mixture of Paracetamol, Pseudoephedrine, Chlorpheniramine, and Sodium Benzoate in (Cold-Flu) Syrup Dosage Form. J AOAC Int 2022; 105:703-716. [PMID: 35015880 DOI: 10.1093/jaoacint/qsac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND A combination of paracetamol, pseudoephedrine, chlorpheniramine, and sodium benzoate in (Cold-Flu) 1,2,3 Syrup dosage form is specified for the treatment of common cold and flu symptoms. OBJECTIVE The functional role of this study is to develop a novel, reliable, and selective stability-indicating reversed-phase ultra-performance liquid chromatography (RP-UPLC) method for simultaneous identification of a quaternary mixture of paracetamol, pseudoephedrine, chlorpheniramine, and sodium benzoate in (Cold-Flu) 1,2,3 Syrup dosage form. METHOD The specific method is accomplished using an Acquity UPLC HSS T3 C18 column (2.1 mm × 100 mm), 1.8 µm particle size with pore size 100 Å, utilizing a mixture of purified water-methanol-trifluoroacetic acid (72.5:27.5:1.5, v/v) as the mobile phase at a flow rate of 0.3 mL/min. The column void volume is 1.15 min. UPLC detection is adjusted at 205 nm using a photodiode array detector. RESULTS Calibration curves are obtained in the linearity ranges: 25-500 µg/mL for paracetamol, 10-50 µg/mL for pseudoephedrine, 0.5-5 µg/mL for chlorpheniramine, and 3-30 µg/mL for sodium benzoate with a correlation coefficient > 0.9992. The mean recovery of the developed method is tested and shows good recovery results between 99-101%; selectivity and forced degradation studies are investigated as per the International Council for Harmonisation Guidelines and no interference is detected due to degradation peaks. CONCLUSION The proposed stability-indicating UPLC method for simultaneous determination of the three drugs, paracetamol, pseudoephedrine, and chlorpheniramine, with a preservative sodium benzoate in (Cold-Flu) 1,2,3 Syrup dosage form is successfully accomplished, developed, and validated, and can be easily used in the analysis of drugs in pure or dosage form. HIGHLIGHTS The novelty of the current research work lies in the development of the UPLC method for simultaneous determination of a quaternary mixture of paracetamol, pseudoephedrine, chlorpheniramine, and sodium benzoate in (Cold-Flu) 1,2,3 Syrup dosage form.
Collapse
|